Some twisted results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 3810123
(http://iopscience.iop.org/0305-4470/38/47/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.94
The article was downloaded on 03/06/2010 at 04:03

Please note that terms and conditions apply.

Some twisted results

M D Gould and T Lekatsas
Department of Mathematics, The University of Queensland, Brisbane, Qld 4072, Australia
E-mail: tel@maths.uq.edu.au

Received 9 May 2005, in final form 10 October 2005
Published 9 November 2005
Online at stacks.iop.org/JPhysA/38/10123

Abstract

The Drinfeld twist for the opposite quasi-Hopf algebra, $H^{\text {cop }}$, is determined and is shown to be related to the (second) Drinfeld twist on a quasi-Hopf algebra. The twisted form of the Drinfeld twist is investigated. In the quasi-triangular case, it is shown that the Drinfeld u-operator arises from the equivalence of $H^{\text {cop }}$ to the quasi-Hopf algebra induced by twisting H with the R-matrix. The Altschuler-Coste u-operator arises in a similar way and is shown to be closely related to the Drinfeld u-operator. The quasi-cocycle condition is introduced and is shown to play a central role in the uniqueness of twisted structures on quasi-Hopf algebras. A generalization of the dynamical quantum YangBaxter equation, called the quasi-dynamical quantum Yang-Baxter equation, is introduced.

PACS numbers: $02.10 . \mathrm{Hh}, 02.20 . \mathrm{Uw}$
Mathematics Subject Classification: 81R50, 16W30

1. Introduction

Quasi-Hopf algebras (QHA) were introduced by Drinfeld [6] as generalizations of Hopf algebras. QHA are the underlying algebraic structures of elliptic quantum groups [8-11, 14, 20] and hence have an important role in obtaining solutions to the dynamical Yang-Baxter equation. They arise in conformal field theory [3, 4], algebraic number theory [7] and in the theory of knots [1, 15, 16].

The antipode S of a Hopf algebra H is uniquely determined as the inverse of the identity map on H under the convolution product. For a quasi-Hopf algebra, the triple (S, α, β) consisting of the antipode S and canonical elements $\alpha, \beta \in H$ is termed the quasi-antipode. The quasi-antipode of a QHA is not unique [2, 6, 17]. However, given two QHAs which differ only in their quasi-antipodes, there exists a unique invertible element $v \in H$ relating them. Moreover, to each invertible element $v \in H$ there corresponds a quasi-antipode, so that the invertible elements $v \in H$ are in bijection with the quasi-antipodes. This allows us to work with a fixed choice for the quasi-antipode (more precisely, a fixed equivalence class for the
quasi-antipode). We show that the operator $v \in H$ is universal, i.e. invariant under an arbitrary twist $F \in H \otimes H$. In the quasi-triangular case, the equivalence of the quasi-antipode of the opposite QHA $H^{\text {cop }}$ and the quasi-antipode induced by twisting H with the R-matrix gives rise to a specific form of the v operator, which we call the Drinfeld-Reshetikhin [5, 18] u-operator. The u-operator introduced by Altschuler and Coste [1] in the context of ribbon quasi-Hopf algebras arises in a similar way and is shown to be simply related to the Drinfeld-Reshetikhin u-operator. In view of the invariance of the v operators, these u-operators are also invariant under twisting.

For a Hopf algebra H, the antipode S is both an algebra and a co-algebra antihomomorphism. In the QHA case, Drinfeld has shown that the antipode S is a co-algebra anti-homomorphism only upto conjugation by a twist, F_{δ} (the Drinfeld twist). Assuming the antipode S is invertible with inverse S^{-1}, we show that S^{-1} is a co-algebra anti-homomorphism upto conjugation by an invertible element F_{0}, which we call the second Drinfeld twist on H. The form of the Drinfeld twist for the opposite QHA $H^{\text {cop }}$ is determined and shown to be simply related to this second Drinfeld twist. The behaviour of the Drinfeld twist F_{δ} under an arbitrary twist $G \in H \otimes H$ is also investigated.

The set of twists on a QHA H form a group. We study a subgroup of the group of twists on a QHA, namely those that leave the co-product $\Delta: H \rightarrow H \otimes H$ and the co-associator $\Phi \in H \otimes H \otimes H$ unchanged. These twists are called compatible twists. Twists that leave the co-associator Φ unchanged are said to satisfy the quasi-cocycle condition. The quasi-cocycle condition is intimately related to the uniqueness of the structure obtained by twisting the quasi-bialgebra part of a QHA. In the quasi-triangular case, we show that $\mathcal{R}^{T} \mathcal{R}$ and its powers are compatible twists.

Following on from our considerations of the quasi-cocycle condition, we introduce the shifted quasi-cocycle condition on a twist $F(\lambda) \in H \otimes H$, where $\lambda \in H$ depends on one (or more) parameter(s). We conclude with the quasi-dynamical quantum Yang-Baxter equation (QQYBE), which is the quasi-Hopf analogue of the usual dynamical QYBE.

2. Preliminaries

We begin by recalling the definition [6] of a quasi-bialgebra.
Definition 1. A quasi-bialgebra $(H, \Delta, \epsilon, \Phi)$ is a unital associative algebra H over a field F, equipped with algebra homomorphisms $\epsilon: H \rightarrow F$ (co-unit), $\Delta: H \rightarrow H \otimes H$ (co-product) and an invertible element $\Phi \in H \otimes H \otimes H$ (co-associator) satisfying

$$
\begin{align*}
& (1 \otimes \Delta) \Delta(a)=\Phi^{-1}(\Delta \otimes 1) \Delta(a) \Phi, \quad \forall a \in H \tag{2.1}\\
& (\Delta \otimes 1 \otimes 1) \Phi \cdot(1 \otimes 1 \otimes \Delta) \Phi=(\Phi \otimes 1) \cdot(1 \otimes \Delta \otimes 1) \Phi \cdot(1 \otimes \Phi) \tag{2.2}\\
& (\epsilon \otimes 1) \Delta=1=(1 \otimes \epsilon) \Delta \tag{2.3}\\
& (1 \otimes \epsilon \otimes 1) \Phi=1 \tag{2.4}
\end{align*}
$$

It follows from equations (2.2)-(2.4) that the co-associator Φ has the additional properties

$$
(\epsilon \otimes 1 \otimes 1) \Phi=1=(1 \otimes 1 \otimes \epsilon) \Phi
$$

We now fix the notation to be used throughout the paper. For the co-associator, we follow the notation of $[12,13]$ and write

$$
\Phi=\sum_{v} X_{v} \otimes Y_{v} \otimes Z_{v}, \quad \Phi^{-1}=\sum_{v} \bar{X}_{v} \otimes \bar{Y}_{v} \otimes \bar{Z}_{v}
$$

We adopt Sweedler's [19] notation for the co-product

$$
\Delta(a)=\sum_{(a)} a_{(1)} \otimes a_{(2)}, \quad \forall a \in H
$$

throughout. Since the co-product is quasi-co-associative, we use the following extension of Sweedler's notation:

$$
\begin{align*}
& (1 \otimes \Delta) \Delta(a)=a_{(1)} \otimes \Delta\left(a_{(2)}\right)=a_{(1)} \otimes a_{(2)}^{(1)} \otimes a_{(2)}^{(2)} \tag{2.5}\\
& (\Delta \otimes 1) \Delta(a)=\Delta\left(a_{(1)}\right) \otimes a_{(2)}=a_{(1)}^{(1)} \otimes a_{(1)}^{(2)} \otimes a_{(2)}
\end{align*}
$$

In general, the summation sign is omitted from expressions with the convention that repeated indices are to be summed over.

Definition 2. A quasi-Hopf algebra $(H, \Delta, \epsilon, \Phi, S, \alpha, \beta)$ is a quasi-bialgebra $(H, \Delta, \epsilon, \Phi)$ equipped with an algebra anti-homomorphism S (antipode) and canonical elements $\alpha, \beta \in H$, such that

$$
\begin{align*}
& S\left(X_{v}\right) \alpha Y_{v} \beta S\left(Z_{v}\right)=1=\bar{X}_{v} \beta S\left(\bar{Y}_{v}\right) \alpha \bar{Z}_{v}, \tag{2.6}\\
& S\left(a_{(1)}\right) \alpha a_{(2)}=\epsilon(a) \alpha, \quad a_{(1)} \beta S\left(a_{(2)}\right)=\epsilon(a) \beta, \quad \forall a \in H . \tag{2.7}
\end{align*}
$$

Throughout we assume bijectivity of the antipode S so that S^{-1} exists. The antipode equations (2.6), (2.7) imply $\epsilon(\alpha) \cdot \epsilon(\beta)=1$ and $\epsilon(S(a))=\epsilon\left(S^{-1}(a)\right)=\epsilon(a), \forall a \in H$. A triple (S, α, β) satisfying equations (2.6), (2.7) is called a quasi-antipode.

We shall need the following relations:

$$
\begin{align*}
& X_{\nu} a \otimes Y_{\nu} \beta S\left(Z_{v}\right)=a_{(1)}^{(1)} X_{\nu} \otimes a_{(1)}^{(2)} Y_{v} \beta S\left(Z_{v}\right) S\left(a_{(2)}\right), \quad \forall a \in H, \tag{2.8}\\
& \Phi \otimes 1 \stackrel{(2.2)}{=}(\Delta \otimes 1 \otimes 1) \Phi \cdot(1 \otimes 1 \otimes \Delta) \Phi \cdot\left(1 \otimes \Phi^{-1}\right) \cdot(1 \otimes \Delta \otimes 1) \Phi^{-1} \\
& \quad=X_{\nu}^{(1)} X_{\mu} \bar{X}_{\rho} \otimes X_{v}^{(2)} Y_{\mu} \bar{X}_{\sigma} \bar{Y}_{\rho}^{(1)} \otimes Y_{\nu} Z_{\mu}^{(1)} \bar{Y}_{\sigma} \bar{Y}_{\rho}^{(2)} \otimes Z_{v} Z_{\mu}^{(2)} \bar{Z}_{\sigma} \bar{Z}_{\rho}, \tag{2.9}
\end{align*}
$$

$1 \otimes \Phi=(1 \otimes \Delta \otimes 1) \Phi^{-1} \cdot\left(\Phi^{-1} \otimes 1\right) \cdot(\Delta \otimes 1 \otimes 1) \Phi \cdot(1 \otimes 1 \otimes \Delta) \Phi$,

$$
\begin{equation*}
=\bar{X}_{\nu} \bar{X}_{\mu} X_{\rho}^{(1)} X_{\sigma} \otimes \bar{Y}_{v}^{(1)} \bar{Y}_{\mu} X_{\rho}^{(2)} Y_{\sigma} \otimes \bar{Y}_{v}^{(2)} \bar{Z}_{\mu} Y_{\rho} Z_{\sigma}^{(1)} \otimes \bar{Z}_{\nu} Z_{\rho} Z_{\sigma}^{(2)} \tag{2.10}
\end{equation*}
$$

where we have adopted the notation of equation (2.5) into (2.8) and the obvious notation in (2.9), (2.10) so that, for example

$$
\Delta\left(X_{v}\right)=X_{v}^{(1)} \otimes X_{v}^{(2)}, \quad \text { etc. }
$$

Equation (2.8) follows from applying $(1 \otimes m)(1 \otimes 1 \otimes \beta S)$ to equation (2.1) then using (2.7).

3. Uniqueness of the quasi-antipode

For Hopf algebras, the antipode S is uniquely determined as the inverse of the identity map on H under the convolution product. The quasi-antipode (S, α, β) for a QHA is not unique. Nevertheless, it is almost unique as the following result due to Drinfeld [6] (whose proof is similar to the one given below) shows:

Theorem 1. Suppose H is also a QHA, but with quasi-antipode ($\tilde{S}, \tilde{\alpha}, \tilde{\beta})$ satisfying (2.6), (2.7). Then there exists a unique invertible $v \in H$, such that

$$
\begin{equation*}
v \alpha=\tilde{\alpha}, \quad \tilde{\beta} v=\beta, \quad \tilde{S}(a)=v S(a) v^{-1}, \quad \forall a \in H \tag{3.1}
\end{equation*}
$$

Explicitly
(i) $\quad v=\tilde{S}\left(X_{v}\right) \tilde{\alpha} Y_{v} \beta S\left(Z_{v}\right)=\tilde{S}\left(S^{-1}\left(\bar{X}_{v}\right)\right) \tilde{S}\left(S^{-1}(\beta)\right) \tilde{S}\left(\bar{Y}_{v}\right) \tilde{\alpha} \bar{Z}_{v}$,
(ii) $\quad v^{-1}=S\left(X_{v}\right) \alpha Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right)=\bar{X}_{v} \tilde{\beta} \tilde{S}\left(\bar{Y}_{v}\right) \tilde{S}\left(S^{-1}(\alpha)\right) \tilde{S}\left(S^{-1}\left(\bar{Z}_{v}\right)\right)$.

Proof. We proceed stepwise.
Applying $m \cdot(\tilde{S} \otimes 1)(1 \otimes \tilde{\alpha})$ to equation (2.8) gives

$$
\tilde{S}\left(X_{v} a\right) \tilde{\alpha} Y_{v} \beta S\left(Z_{v}\right)=\tilde{S}\left(a_{(1)}^{(1)} X_{v}\right) \tilde{\alpha} a_{(1)}^{(2)} Y_{v} \beta S\left(Z_{v}\right) S\left(a_{(2)}\right),
$$

so that
$\tilde{S}(a) v=\tilde{S}\left(X_{\nu}\right) \tilde{S}\left(a_{(1)}^{(1)}\right) \tilde{\alpha} a_{(1)}^{(2)} Y_{\nu} \beta S\left(Z_{v}\right) S\left(a_{(2)}\right) \stackrel{(2.7)}{=} v S(a), \quad \forall a \in H$,
where $m: H \otimes H \rightarrow H$ is the multiplication map $m(a \otimes b)=a b, \forall a, b \in H$.
Next observe, from equation (2.9) that, in view of (2.7),
$v \otimes 1=\tilde{S}\left(X_{\nu}^{(1)} X_{\mu} \bar{X}_{\rho}\right) \tilde{\alpha} X_{v}^{(2)} Y_{\mu} \bar{X}_{\sigma} \bar{Y}_{\rho}^{(1)} \beta S\left(Y_{\nu} Z_{\mu}^{(1)} \bar{Y}_{\sigma} \bar{Y}_{\rho}^{(2)}\right) \otimes Z_{\nu} Z_{\mu}^{(2)} \bar{Z}_{\sigma} \bar{Z}_{\rho}$

$$
=\tilde{S}\left(X_{\mu}\right) \tilde{\alpha} Y_{\mu} \bar{X}_{\sigma} \beta S\left(Z_{\mu}^{(1)} \bar{Y}_{\sigma}\right) \otimes Z_{\mu}^{(2)} \bar{Z}_{\sigma}
$$

Applying $m \cdot(1 \otimes \alpha)$ from the left gives

$$
\begin{align*}
v \alpha & =\tilde{S}\left(X_{\mu}\right) \tilde{\alpha} Y_{\mu} \bar{X}_{\sigma} \beta S\left(Z_{\mu}^{(1)} \bar{Y}_{\sigma}\right) \alpha Z_{\mu}^{(2)} \bar{Z}_{\sigma} \\
& =\tilde{\alpha} \bar{X}_{\sigma} \beta S\left(\bar{Y}_{\sigma}\right) \alpha \bar{Z}_{\sigma} \stackrel{(2.6)}{=} \tilde{\alpha} . \tag{3.4}
\end{align*}
$$

From this it follows that

$$
\begin{aligned}
\tilde{S}\left(S^{-1}\left(\bar{X}_{v}\right)\right) \cdot & \tilde{S}\left(S^{-1}(\beta)\right) \cdot \tilde{S}\left(\bar{Y}_{v}\right) \tilde{\alpha} \bar{Z}_{v} \\
& \left.\stackrel{(3.4)}{=} \tilde{S}\left(S^{-1}\left(\bar{X}_{v}\right)\right) \cdot \tilde{S}\left(S^{-1}(\beta)\right) \tilde{S}^{(} \bar{Y}_{v}\right) \cdot v \alpha \bar{Z}_{v} \\
& \stackrel{(3.3)}{=} v \cdot S\left(S^{-1}\left(\bar{X}_{v}\right)\right) \cdot S\left(S^{-1}(\beta)\right) \cdot S\left(\bar{Y}_{v}\right) \alpha \bar{Z}_{v} \\
& =v \cdot \bar{X}_{v} \beta S\left(\bar{Y}_{v}\right) \alpha \bar{Z}_{v} \stackrel{2.6}{=} v,
\end{aligned}
$$

which proves (3.2) (i). To see v is invertible observe that

$$
\begin{aligned}
v \cdot S\left(X_{v}\right) \alpha Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right) & \stackrel{(3.3)}{=} \tilde{S}\left(X_{v}\right) v \alpha Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right) \\
& \stackrel{(3.4)}{=} \tilde{S}\left(X_{v}\right) \tilde{\alpha} Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right) \\
& \stackrel{(2.6)}{=} 1,
\end{aligned}
$$

so

$$
v^{-1}=S\left(X_{v}\right) \alpha Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right)
$$

as stated.
Now using equation (2.10), we have
$1 \otimes v^{-1}=\bar{X}_{\nu} \bar{X}_{\mu} X_{\rho}^{(1)} X_{\sigma} \otimes S\left(\bar{Y}_{v}^{(1)} \bar{Y}_{\mu} X_{\rho}^{(2)} Y_{\sigma}\right) \alpha \bar{Y}_{\nu}^{(2)} \bar{Z}_{\mu} Y_{\rho} \bar{Z}_{\sigma}^{(1)} \tilde{\beta} \tilde{S}\left(\bar{Z}_{v} Z_{\rho} Z_{\sigma}^{(2)}\right)$

$$
\stackrel{(2.7)}{=} \bar{X}_{\mu} X_{\rho}^{(1)} \otimes S\left(\bar{Y}_{\mu} X_{\rho}^{(2)}\right) \alpha \bar{Z}_{\mu} Y_{\rho} \tilde{\beta} \tilde{S}\left(Z_{\rho}\right) .
$$

Applying $m \cdot(1 \otimes \beta)$ gives

$$
\begin{align*}
\beta v^{-1} & =\bar{X}_{\mu} X_{\rho}^{(1)} \beta S\left(\bar{Y}_{\mu} X_{\rho}^{(2)}\right) \alpha \bar{Z}_{\mu} Y_{\rho} \tilde{\beta} \tilde{S}\left(Z_{\rho}\right) \\
& =\bar{X}_{\mu} \beta S\left(\bar{Y}_{\mu}\right) \alpha \bar{Z}_{\mu} \cdot \tilde{\beta} \stackrel{(2.6)}{=} \tilde{\beta}, \tag{3.5}
\end{align*}
$$

which completes the proof of (3.1). As to (3.2) (ii) observe that

$$
\begin{aligned}
& \tilde{X}_{v} \tilde{\beta} \tilde{S}\left(\bar{Y}_{v}\right) \tilde{S}\left(S^{-1}(\alpha)\right) \tilde{S}\left(S^{-1}\left(\bar{Z}_{v}\right)\right) \\
& \stackrel{(3.5)}{=} \bar{X}_{v} \beta v^{-1} \tilde{S}\left(\bar{Y}_{v}\right) \tilde{S}\left(S^{-1}(\alpha)\right) \tilde{S}\left(S^{-1}\left(\bar{Z}_{v}\right)\right) \\
& \stackrel{(3.3)}{=} \bar{X}_{v} \beta S\left(\bar{Y}_{v}\right) S\left(S^{-1}(\alpha)\right) S\left(S^{-1}\left(\bar{Z}_{v}\right)\right) v^{-1} \\
&=\bar{X}_{v} \beta S\left(\bar{Y}_{v}\right) \alpha \bar{Z}_{v} \cdot v^{-1} \stackrel{(2.6)}{=} v^{-1}
\end{aligned}
$$

as required. It finally remains to prove uniqueness. Hence, suppose $u \in H$ satisfies

$$
u S(a)=\tilde{S}(a) u, \quad \forall a \in H, \quad u \alpha=\tilde{\alpha}, \quad \tilde{\beta} u=\beta
$$

Then,

$$
\begin{aligned}
u v^{-1} & =u \cdot S\left(X_{\nu}\right) \alpha Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right) \\
& =\tilde{S}\left(X_{v}\right) u \alpha Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right) \\
& =\tilde{S}\left(X_{v}\right) \tilde{\alpha} Y_{v} \tilde{\beta} \tilde{S}\left(Z_{v}\right) \stackrel{(2.6)}{=} 1,
\end{aligned}
$$

which implies $u=v$ as required.
In the special case $\tilde{S}=S$, we obtain the following useful result.
Corollary. Suppose H is also a QHA with quasi-antipode $(S, \tilde{\alpha}, \tilde{\beta})$. Then there is a unique invertible central element $v \in H$, given explicitly by equation (3.2) (i) (with $\tilde{S}=S$), such that

$$
v \alpha=\tilde{\alpha}, \quad \tilde{\beta} v=\beta
$$

It thus follows that the triple (S, α, β) satisfying (2.6), (2.7) for a QHA is not unique. Indeed following theorem 1 , for arbitrary invertible $v \in H$, the triple $(\tilde{S}, \tilde{\alpha}, \tilde{\beta})$ defined by

$$
\tilde{S}(a)=v S(a) v^{-1}, \quad \forall a \in H ; \quad \tilde{\alpha}=v \alpha, \quad \tilde{\beta}=\beta v^{-1}
$$

is easily seen to satisfy (2.6), (2.7) and thus gives rise to a quasi-antipode ($\tilde{S}, \tilde{\alpha}, \tilde{\beta})$. Theorem 1 then shows that all such quasi-antipodes $(\tilde{S}, \tilde{\alpha}, \tilde{\beta})$ are obtainable this way; thus, there is a $1-1$ correspondence between the latter and invertible $v \in H$. We say that these structures are equivalent, since they clearly give rise to equivalent QHA structures. Throughout we work with a fixed choice for the quasi-antipode (S, α, β).

We conclude this section with the following useful result, proved in [13], concerning the opposite QHA structure on H :

Proposition 1. H is also a $Q H A$, with co-unit ϵ, under the opposite co-product and coassociator $\Delta^{T}, \Phi^{T} \equiv \Phi_{321}^{-1}$, respectively, with quasi-antipode $\left(S^{-1}, \alpha^{T}=S^{-1}(\alpha), \beta^{T}=\right.$ $S^{-1}(\beta)$).

The QHA $H^{\text {cop }} \equiv\left(H, \Delta^{T}, \epsilon, \Phi^{T}, S^{-1}, \alpha^{T}, \beta^{T}\right)$ is called the opposite QHA structure. We remark that above we have adopted the notation of $[12,13]$ so that $\Delta^{T}=T \cdot \Delta$, where T is the usual twist map, and

$$
\Phi_{321}^{-1}=\bar{Z}_{v} \otimes \bar{Y}_{v} \otimes \bar{X}_{v}
$$

This latter notation extends in a natural way and will be employed throughout.

4. Twisting

Let H be a quasi-bialgebra. Then $F \in H \otimes H$ is called a twist if it is invertible and satisfies the co-unit property

$$
(\epsilon \otimes 1) F=(1 \otimes \epsilon) F=1
$$

We recall that H is also a QBA with the same co-unit ϵ but with co-product and co-associator given by

$$
\begin{align*}
& \Delta_{F}(a)=F \Delta(a) F^{-1}, \quad \forall a \in H, \\
& \Phi_{F}=(F \otimes 1) \cdot(\Delta \otimes 1) F \cdot \Phi \cdot(1 \otimes \Delta) F^{-1} \cdot\left(1 \otimes F^{-1}\right), \tag{4.1}
\end{align*}
$$

called the twisted structure induced by F. If moreover H is a QHA with quasi-antipode (S, α, β) then H is also a QHA under the above twisted structure with the same antipode S but with canonical elements

$$
\begin{equation*}
\alpha_{F}=m \cdot(1 \otimes \alpha)(S \otimes 1) F^{-1}, \quad \beta_{F}=m \cdot(1 \otimes \beta)(1 \otimes S) F \tag{4.2}
\end{equation*}
$$

respectively. A detailed proof of these well-known results is given in [20]. We now investigate the behaviour of the operator v of theorem 1 under the twisted structure induced by F.

4.1. Universality of v

Recall that the operator v is given by

$$
v=\tilde{S}\left(X_{v}\right) \tilde{\alpha} Y_{v} \beta S\left(Z_{v}\right)
$$

Let $F \in H \otimes H$ be an arbitrary twist. We use the following notation for the twist F and its inverse F^{-1},

$$
F=f_{i} \otimes f^{i}, \quad F^{-1}=\bar{f}_{i} \otimes \bar{f}^{i}
$$

The twisted form of the co-associator is given by (4.1)
$\Phi_{F}=X_{v}^{F} \otimes Y_{v}^{F} \otimes Z_{v}^{F}=f_{i} f_{j}^{(1)} X_{\nu} \bar{f}_{k} \otimes f^{i} f_{j}^{(2)} Y_{v} \bar{f}_{(1)}^{k} \bar{f}_{l} \otimes f^{j} Z_{v} \bar{f}_{(2)}^{k} \bar{f}^{l}$.
For the twisted forms of the canonical elements we have from (4.2)

$$
\begin{align*}
& \tilde{\alpha}_{F}=m \cdot(1 \otimes \tilde{\alpha})(\tilde{S} \otimes 1) F^{-1}=\tilde{S}\left(\bar{f}_{p}\right) \tilde{\alpha} \bar{f}^{p}, \tag{4.4}\\
& \beta_{F}=m \cdot(1 \otimes \beta)(1 \otimes S) F=f_{q} \beta S\left(f^{q}\right) .
\end{align*}
$$

We note that

$$
\begin{equation*}
\tilde{S}\left(f_{j}\right) \tilde{\alpha}_{F} f^{j} \stackrel{(4.4)}{=} \tilde{S}\left(\bar{f}_{p} f_{j}\right) \tilde{\alpha} \bar{f}^{p} f^{j}=m \cdot(1 \otimes \alpha)(\tilde{S} \otimes 1)\left(F^{-1} F\right)=\tilde{\alpha} \tag{4.5}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
\bar{f}_{j} \beta_{F} S\left(\bar{f}^{j}\right)=\beta \tag{4.6}
\end{equation*}
$$

The twisted form of v is given by

$$
\begin{aligned}
& v_{F}=\tilde{S}\left(X_{v}^{F}\right) \tilde{\alpha}_{F} Y_{v}^{F} \beta_{F} S\left(Z_{v}^{F}\right) \\
& \quad \stackrel{(4.3)}{=} \tilde{S}\left(f_{i} f_{j}^{(1)} X_{v} \bar{f}_{k}\right) \tilde{\alpha}_{F} f^{i} f_{j}^{(2)} Y_{v} \bar{f}_{(1)}^{k} \bar{f}_{l} \beta_{F} S\left(f^{j} Z_{v} \bar{f}_{(2)}^{k} \bar{f}^{l}\right) \\
&=\tilde{S}\left(f_{j}^{(1)} X_{v} \bar{f}_{k}\right) \tilde{S}\left(f_{i}\right) \tilde{\alpha}_{F} f^{i} f_{j}^{(2)} Y_{v} \bar{f}_{(1)}^{k} \bar{f}_{l} \beta_{F} S\left(\bar{f}^{l}\right) S\left(f^{j} Z_{v} \bar{f}_{(2)}^{k}\right) \\
& \stackrel{(4.5)}{=} \tilde{S}\left(f_{j}^{(1)} X_{v} \bar{f}_{k}\right) \tilde{\alpha} f_{j}^{(2)} Y_{v} \bar{f}_{(1)}^{k} \bar{f}_{l} \beta_{F} S\left(\bar{f}^{l}\right) S\left(f^{j} Z_{v} \bar{f}_{(2)}^{k}\right) \\
& \stackrel{(4.6)}{=} \tilde{S}\left(f_{j}^{(1)} X_{v} \bar{f}_{k}\right) \tilde{\alpha} f_{j}^{(2)} Y_{v} \bar{f}_{(1)}^{k} \beta S\left(f^{j} Z_{v} \bar{f}_{(2)}^{k}\right) \\
&=\tilde{S}\left(X_{v} \bar{f}_{k}\right) \tilde{S}\left(f_{j}^{(1)}\right) \tilde{\alpha} f_{j}^{(2)} Y_{v} \bar{f}_{(1)}^{k} \beta S\left(\bar{f}_{(2))}^{k}\right) S\left(f^{j} Z_{v}\right) \\
&=\tilde{S}\left(X_{v} \bar{f}_{k}\right) \tilde{\alpha} Y_{v} \bar{f}_{(1)}^{k} \beta S\left(\bar{f}_{(2)}^{k}\right) S\left(Z_{v}\right) \\
&=\tilde{S}\left(X_{v}\right) \tilde{\alpha} Y_{v} \beta S\left(Z_{v}\right)=v,
\end{aligned}
$$

where in the last two lines we have used the antipode properties of α, β (2.7) and the co-unit property of twists. We have thus proved:

Theorem 2. The operator v is universal (i.e., invariant under twisting).

5. The Drinfeld twists

We turn our attention to the Drinfeld twist for the opposite structure of proposition 1. It is tempting to assume that F_{δ}^{T} qualifies as a Drinfeld twist for the opposite structure. However, this is not true since the antipode for the latter is S^{-1} rather than S. We shall show that the Drinfeld twist for the opposite structure is in fact related to the second Drinfeld twist which we define below. We begin with a review of the Drinfeld twist.

5.1. The Drinfeld twist

Observe that Δ^{\prime} defined by

$$
\begin{equation*}
\Delta^{\prime}(a)=(S \otimes S) \Delta^{T}\left(S^{-1}(a)\right), \quad \forall a \in H \tag{5.1}
\end{equation*}
$$

also determines a co-product on H. Associated with this co-product, we have a new QHA structure on H, which was proved in [13] and which we restate here:

Proposition 2. H is also a $Q H A$ with the same co-unit ϵ and antipode S but with co-product Δ^{\prime}, co-associator $\Phi^{\prime}=(S \otimes S \otimes S) \Phi_{321}$ and canonical elements $\alpha^{\prime}=S(\beta), \beta^{\prime}=S(\alpha)$, respectively.

Drinfeld has proved the remarkable result that this QHA structure is obtained by twisting with the Drinfeld twist, herein denoted as F_{δ}, given explicitly by
(i) $\quad F_{\delta}=(S \otimes S) \Delta^{T}\left(X_{\nu}\right) \cdot \gamma \cdot \Delta\left(Y_{\nu} \beta S\left(Z_{\nu}\right)\right)$,

$$
=\Delta^{\prime}\left(\bar{X}_{v} \beta S\left(\bar{Y}_{v}\right)\right) \cdot \gamma \cdot \Delta\left(\bar{Z}_{v}\right)
$$

where
(ii) $\quad \gamma=S\left(B_{i}\right) \alpha C_{i} \otimes S\left(A_{i}\right) \alpha D_{i}$
with
(iii) $\quad A_{i} \otimes B_{i} \otimes C_{i} \otimes D_{i}=\left\{\begin{array}{l}\left(\Phi^{-1} \otimes 1\right) \cdot(\Delta \otimes 1 \otimes 1) \Phi \\ \text { or } \\ (1 \otimes \Phi) \cdot(1 \otimes 1 \otimes \Delta) \Phi^{-1} .\end{array}\right.$

The inverse of F_{δ} is given explicitly by

$$
\text { (i) } \quad \begin{aligned}
F_{\delta}^{-1} & =\Delta\left(\bar{X}_{v}\right) \cdot \bar{\gamma} \cdot \Delta^{\prime}\left(S\left(\bar{Y}_{v}\right) \alpha \bar{Z}_{v}\right) \\
& =\Delta\left(S\left(X_{v}\right) \alpha Y_{v}\right) \cdot \bar{\gamma} \cdot(S \otimes S) \Delta^{T}\left(Z_{v}\right),
\end{aligned}
$$

where
(ii) $\bar{\gamma}=\bar{A}_{i} \beta S\left(\bar{D}_{i}\right) \otimes \bar{B}_{i} \beta S\left(\bar{C}_{i}\right)$
with

$$
\text { (iii) } \quad \bar{A}_{i} \otimes \bar{B}_{i} \otimes \bar{C}_{i} \otimes \bar{D}_{i}=\left\{\begin{array}{l}
(\Delta \otimes 1 \otimes 1) \Phi^{-1} \cdot(\Phi \otimes 1) \tag{5.3}\\
\text { or } \\
(1 \otimes 1 \otimes \Delta) \Phi \cdot\left(1 \otimes \Phi^{-1}\right) .
\end{array}\right.
$$

The detailed proof that the QHA structure of proposition 2 is obtained by twisting with F_{δ}, as given in (5.2), and in particular

$$
\begin{equation*}
\Delta^{\prime}(a)=F_{\delta} \Delta(a) F_{\delta}^{-1}, \quad \forall a \in H \tag{5.4}
\end{equation*}
$$

is proved in [13]. We simply state here some properties of $\gamma, \bar{\gamma}$ proved in [13] and which are crucial to the demonstration of Drinfeld's result:

Proposition 3.

(i) $\quad(S \otimes S) \Delta^{T}\left(a_{(1)}\right) \cdot \gamma \cdot \Delta\left(a_{(2)}\right)=\epsilon(a) \gamma, \quad \forall a \in H$,
(ii) $\quad \Delta\left(a_{(1)}\right) \cdot \bar{\gamma} \cdot(S \otimes S) \Delta^{T}\left(a_{(2)}\right)=\epsilon(a) \bar{\gamma}, \quad \forall a \in H$,
(iii) $\quad F_{\delta} \Delta(\alpha)=\gamma, \quad \Delta(\beta) F_{\delta}^{-1}=\bar{\gamma}$.

5.2. The second Drinfeld twist

Replacing S with S^{-1}, we obtain yet another co-product Δ_{0} on H :

$$
\Delta_{0}(a)=\left(S^{-1} \otimes S^{-1}\right) \Delta^{T}(S(a)), \quad \forall a \in H
$$

We have the following analogue of proposition 2, the proof of which parallels that of [13] proposition 4, but with S and S^{-1} interchanged:

Proposition 2'. H is also a QHA with the same co-unit ϵ and antipode S but with co-product Δ_{0}, co-associator $\Phi_{0}=\left(S^{-1} \otimes S^{-1} \otimes S^{-1}\right) \Phi_{321}$ and canonical elements $\alpha_{0}=S^{-1}(\beta), \beta_{0}=$ $S^{-1}(\alpha)$, respectively.

By symmetry, we would expect this structure to be obtainable twisting. Indeed, we have
Theorem 3. The QHA structure of proposition 2^{\prime} is obtained by twisting with

$$
\begin{equation*}
F_{0} \equiv\left(S^{-1} \otimes S^{-1}\right) F_{\delta}^{T} \tag{5.6}
\end{equation*}
$$

herein referred to as the second Drinfeld twist, where F_{δ} is the Drinfeld twist and $F_{\delta}^{T}=T \cdot F_{\delta}$.
Proof. It is clear that F_{0} is invertible with inverse $F_{0}^{-1}=\left(S^{-1} \otimes S^{-1}\right)\left(F_{\delta}^{T}\right)^{-1}$ and qualifies as a twist. For the co-product, we observe

$$
\begin{aligned}
F_{0} \Delta(a) F_{0}^{-1} & =\left(S^{-1} \otimes S^{-1}\right) F_{\delta}^{T} \cdot \Delta(a) \cdot\left(S^{-1} \otimes S^{-1}\right)\left(F_{\delta}^{T}\right)^{-1} \\
& =\left(S^{-1} \otimes S^{-1}\right) \cdot T \cdot\left[F_{\delta}^{-1} \cdot(S \otimes S) \Delta^{T}(a) \cdot F_{\delta}\right] \\
& =\left(S^{-1} \otimes S^{-1}\right) \cdot T \cdot\left[F_{\delta}^{-1} \Delta^{\prime}(S(a)) F_{\delta}\right] \\
& \stackrel{(5.4)}{=}\left(S^{-1} \otimes S^{-1}\right) \cdot T \cdot \Delta(S(a))=\left(S^{-1} \otimes S^{-1}\right) \Delta^{T}(S(a)) \\
& \stackrel{\left(5.1^{\prime}\right)}{=} \Delta_{0}(a), \quad \forall a \in H .
\end{aligned}
$$

The co-associator is slightly more complicated though also simple. We have from Drinfeld's result

$$
\Phi^{\prime} \equiv(S \otimes S \otimes S) \Phi_{321}=\left(F_{\delta} \otimes 1\right) \cdot(\Delta \otimes 1) F_{\delta} \cdot \Phi \cdot(1 \otimes \Delta) F_{\delta}^{-1} \cdot\left(1 \otimes F_{\delta}^{-1}\right)
$$

which implies

$$
\begin{aligned}
(S \otimes S \otimes S) \Phi & =\left[\left(F_{\delta} \otimes 1\right) \cdot(\Delta \otimes 1) F_{\delta} \cdot \Phi \cdot(1 \otimes \Delta) F_{\delta}^{-1} \cdot\left(1 \otimes F_{\delta}^{-1}\right)\right]_{321} \\
& =\left(1 \otimes F_{\delta}^{T}\right) \cdot\left(1 \otimes \Delta^{T}\right) F_{\delta}^{T} \cdot \Phi_{321} \cdot\left(\Delta^{T} \otimes 1\right) F_{\delta}^{T-1} \cdot\left(F_{\delta}^{T-1} \otimes 1\right)
\end{aligned}
$$

Applying $\left(S^{-1} \otimes S^{-1} \otimes S^{-1}\right)$ gives

$$
\begin{aligned}
\Phi & =\left(F_{0}^{-1} \otimes 1\right) \cdot\left(\Delta_{0} \otimes 1\right) F_{0}^{-1} \cdot \Phi_{0} \cdot\left(1 \otimes \Delta_{0}\right) F_{0} \cdot\left(1 \otimes F_{0}\right) \\
& =(\Delta \otimes 1) F_{0}^{-1} \cdot\left(F_{0}^{-1} \otimes 1\right) \cdot \Phi_{0} \cdot\left(1 \otimes F_{0}\right) \cdot(1 \otimes \Delta) F_{0}
\end{aligned}
$$

with F_{0} as in the theorem. Thus,

$$
\Phi_{0}=\left(F_{0} \otimes 1\right) \cdot(\Delta \otimes 1) F_{0} \cdot \Phi \cdot(1 \otimes \Delta) F_{0}^{-1} \cdot\left(1 \otimes F_{0}^{-1}\right)
$$

which shows that indeed Φ_{0} is obtained from Φ by twisting with F_{0}. The proof for the canonical elements is straightforward.

5.3. The Drinfeld twists for the opposite structure

Recall that under the opposite structure of proposition $1, H$ is a QHA with antipode S^{-1}, co-product Δ^{T} and co-associator $\Phi^{T}=\Phi_{321}^{-1}$. It follows that if F_{δ}^{0} is the Drinfeld twist for this opposite structure then, $\forall a \in H$,

$$
\begin{aligned}
F_{\delta}^{0} \Delta^{T}(a)\left(F_{\delta}^{0}\right)^{-1} & =\left(\Delta^{T}\right)^{\prime}(a) \\
& =\left(S^{-1} \otimes S^{-1}\right) \Delta(S(a))=\Delta_{0}^{T}(a)
\end{aligned}
$$

since S^{-1} is the antipode for this structure. On the other hand, if F_{0} is the Drinfeld twist of equation (5.6), we also have

$$
F_{0}^{T} \Delta^{T}(a)\left(F_{0}^{T}\right)^{-1}=\Delta_{0}^{T}(a)
$$

with Δ_{0} as in equation (5.1'). Here, we show in fact that $F_{\delta}^{0}=F_{0}^{T}$.
Before proceeding we note that the Drinfeld twist is given by the canonical expression of equation (5.2) (i) with γ as in (5.2) (ii) constructed from the operator of (5.2) (iii); namely,

$$
A_{i} \otimes B_{i} \otimes C_{i} \otimes D_{i}=\left\{\begin{array}{l}
\left(\Phi^{-1} \otimes 1\right) \cdot(\Delta \otimes 1 \otimes 1) \Phi \\
\text { or } \\
(1 \otimes \Phi) \cdot(1 \otimes 1 \otimes \Delta) \Phi^{-1}
\end{array}\right.
$$

This gives rise to two equivalent expansions for γ. Using the first expression we have, in obvious notation,

$$
\begin{aligned}
A_{i} \otimes B_{i} \otimes C_{i} \otimes D_{i} & =\left(\Phi^{-1} \otimes 1\right) \cdot(\Delta \otimes 1 \otimes 1) \Phi \\
& =\bar{X}_{v} X_{\mu}^{(1)} \otimes \bar{Y}_{v} X_{\mu}^{(2)} \otimes \bar{Z}_{v} Y_{\mu} \otimes Z_{\mu}
\end{aligned}
$$

which gives, upon substitution into (5.2) (ii),

$$
\gamma=S\left(\bar{Y}_{\nu} X_{\mu}^{(2)}\right) \alpha \bar{Z}_{v} Y_{\mu} \otimes S\left(\bar{X}_{v} X_{\mu}^{(1)}\right) \alpha Z_{\mu}
$$

which is the expression obtained in [13]. On the other hand, using the second expression gives

$$
\begin{aligned}
A_{i} \otimes B_{i} \otimes C_{i} \otimes D_{i} & =(1 \otimes \Phi) \cdot(1 \otimes 1 \otimes \Delta) \Phi^{-1} \\
& =\bar{X}_{\mu} \otimes X_{v} \bar{Y}_{\mu} \otimes Y_{v} \bar{Z}_{\mu}^{(1)} \otimes Z_{v} \bar{Z}_{\mu}^{(2)}
\end{aligned}
$$

and substituting into (5.2) (ii) gives the alternative expansion

$$
\begin{equation*}
\gamma=S\left(X_{\nu} \bar{Y}_{\mu}\right) \alpha Y_{v} \bar{Z}_{\mu}^{(1)} \otimes S\left(\bar{X}_{\mu}\right) \alpha Z_{v} \bar{Z}_{\mu}^{(2)} \tag{5.7}
\end{equation*}
$$

which is equivalent to the expression above [13].
Using (5.2) (i) for the opposite structure, we have for the Drinfeld twist

$$
F_{\delta}^{0}=\left(S^{-1} \otimes S^{-1}\right) \Delta\left(X_{v}^{0}\right) \cdot \gamma^{0} \cdot \Delta^{T}\left(Y_{v}^{0} \beta^{T} S^{-1}\left(Z_{v}^{0}\right)\right)
$$

where we have used the fact that the co-product for the opposite structure is Δ^{T}, the antipode is S^{-1}, with canonical elements $\alpha^{T}=S^{-1}(\alpha), \beta^{T}=S^{-1}(\beta)$ and where we have set

$$
X_{v}^{0} \otimes Y_{v}^{0} \otimes Z_{v}^{0}=\Phi^{T}=\Phi_{321}^{-1}
$$

which is the opposite co-associator, and where from (5.2) (ii)

$$
\gamma^{0}=S^{-1}\left(B_{i}^{0}\right) \alpha^{T} C_{i}^{0} \otimes S^{-1}\left(A_{i}^{0}\right) \alpha^{T} D_{i}^{0}
$$

with

$$
\begin{aligned}
A_{i}^{0} \otimes B_{i}^{0} \otimes C_{i}^{0} \otimes D_{i}^{0} & =\left[\left(\Phi^{T}\right)^{-1} \otimes 1\right] \cdot\left(\Delta^{T} \otimes 1 \otimes 1\right) \Phi^{T} \\
& =\left(\Phi_{321} \otimes 1\right) \cdot\left(\Delta^{T} \otimes 1 \otimes 1\right) \Phi_{321}^{-1}
\end{aligned}
$$

In obvious notation, the latter is given by

$$
\left(\Phi_{321} \otimes 1\right) \cdot\left(\Delta^{T} \otimes 1 \otimes 1\right) \Phi_{321}^{-1}=Z_{v} \bar{Z}_{\mu}^{(2)} \otimes Y_{v} \bar{Z}_{\mu}^{(1)} \otimes X_{\nu} \bar{Y}_{\mu} \otimes \bar{X}_{\mu}
$$

so that, using $\alpha^{T}=S^{-1}(\alpha)$,

$$
\begin{aligned}
\gamma^{0} & =S^{-1}\left(Y_{\nu} \bar{Z}_{\mu}^{(1)}\right) S^{-1}(\alpha) X_{\nu} \bar{Y}_{\mu} \otimes S^{-1}\left(Z_{\nu} \bar{Z}_{\mu}^{(2)}\right) S^{-1}(\alpha) \bar{X}_{\mu} \\
& \stackrel{(5.7)}{=}\left(S^{-1} \otimes S^{-1}\right)(\gamma) .
\end{aligned}
$$

Thus we may write, using $\beta^{T}=S^{-1}(\beta)$,

$$
F_{\delta}^{0}=\left(S^{-1} \otimes S^{-1}\right) \Delta\left(X_{\nu}^{0}\right) \cdot\left(S^{-1} \otimes S^{-1}\right) \gamma \cdot \Delta^{T}\left(Y_{\nu}^{0} S^{-1}(\beta) S^{-1}\left(Z_{\nu}^{0}\right)\right)
$$

so that, substituting

$$
X_{v}^{0} \otimes Y_{v}^{0} \otimes Z_{v}^{0}=\Phi^{T}=\Phi_{321}^{-1}=\bar{Z}_{v} \otimes \bar{Y}_{v} \otimes \bar{X}_{v}
$$

gives

$$
\begin{aligned}
F_{\delta}^{0} & =\left(S^{-1} \otimes S^{-1}\right) \Delta\left(\bar{Z}_{v}\right) \cdot\left(S^{-1} \otimes S^{-1}\right) \gamma \cdot \Delta^{T}\left(\bar{Y}_{v} S^{-1}(\beta) S^{-1}\left(\bar{X}_{v}\right)\right) \\
& =\left(S^{-1} \otimes S^{-1}\right) \cdot\left[(S \otimes S) \Delta^{T}\left(\bar{Y}_{v} S^{-1}\left(\bar{X}_{v} \beta\right)\right) \cdot \gamma \cdot \Delta\left(\bar{Z}_{v}\right)\right] \\
& =\left(S^{-1} \otimes S^{-1}\right) \cdot\left[\Delta^{\prime}\left(\bar{X}_{v} \beta S\left(\bar{Y}_{v}\right)\right) \cdot \gamma \cdot \Delta\left(\bar{Z}_{v}\right)\right] \\
& \stackrel{(5.2)(i)}{=}\left(S^{-1} \otimes S^{-1}\right) F_{\delta} \stackrel{(5.6)}{=} F_{0}^{T} .
\end{aligned}
$$

Thus, we have proved
Proposition 4. The Drinfeld twist for the opposite QHA structure of proposition 1 is given explicitly by

$$
F_{\delta}^{0}=\left(S^{-1} \otimes S^{-1}\right) F_{\delta}=F_{0}^{T}
$$

To see how F_{δ}^{T} fits into the picture, we need to consider the second Drinfeld twist F_{0} of theorem 3 associated with the co-product of equation (5.1'). We have immediately from proposition 4

Corollary. The second Drinfeld twist for the opposite structure is F_{δ}^{T}.
Proof. Since the antipode for the opposite structure is S^{-1}, theorem 3 implies that the second Drinfeld twist for this structure is $(S \otimes S)\left(F_{\delta}^{0}\right)^{T}$, where F_{δ}^{0} is the Drinfeld twist for the opposite structure, given explicitly in proposition 4. It follows that the second Drinfeld twist for the opposite structure is

$$
(S \otimes S) \cdot\left[\left(S^{-1} \otimes S^{-1}\right) F_{\delta}^{T}\right]=F_{\delta}^{T}
$$

5.4. Twisting the Drinfeld twist

It is first useful to determine the behaviour of $\bar{\gamma}$ in equation (5.3) (ii) under an arbitrary twist $G \in H \otimes H$. Under the twisted structure induced by G, the operator $\bar{\gamma}$ is twisted to $\bar{\gamma}_{G}$, given by equation (5.3) (ii, iii) for the twisted structure, so that
(i) $\quad \bar{\gamma}_{G}=\bar{A}_{i}^{G} \beta_{G} S\left(\bar{D}_{i}^{G}\right) \otimes \bar{B}_{i}^{G} \beta_{G} S\left(\bar{C}_{i}^{G}\right)$
where
(ii) $\bar{A}_{i}^{G} \otimes \bar{B}_{i}^{G} \otimes \bar{C}_{i}^{G} \otimes \bar{D}_{i}^{G}=\left(\Delta_{G} \otimes 1 \otimes 1\right) \Phi_{G}^{-1} \cdot\left(\Phi_{G} \otimes 1\right)$.

We have
Proposition 5. Let $G=g_{i} \otimes g^{i} \in H \otimes H$ be a twist on a QHA H. Then,

$$
\bar{\gamma}_{G}=G \cdot \Delta\left(g_{i}\right) \cdot \bar{\gamma} \cdot(S \otimes S)\left(G^{T} \Delta^{T}\left(g^{i}\right)\right)
$$

Proof. Throughout we write

$$
G^{-1}=\bar{g}_{i} \otimes \bar{g}^{i} .
$$

For the RHS of equation (5.8) (ii), we have

$$
\begin{aligned}
&\left(\Delta_{G} \otimes 1 \otimes 1\right) \Phi_{G}^{-1} \cdot\left(\Phi_{G} \otimes 1\right)=\left(\Delta_{G} \otimes 1 \otimes 1\right) \cdot\left[(1 \otimes G) \cdot(1 \otimes \Delta) G \cdot \Phi^{-1} \cdot(\Delta \otimes 1) G^{-1}\right. \\
&\left.\cdot\left(G^{-1} \otimes 1\right)\right] \cdot\left\{\left[(G \otimes 1) \cdot(\Delta \otimes 1) G \cdot \Phi \cdot(1 \otimes \Delta) G^{-1} \cdot\left(1 \otimes G^{-1}\right)\right] \otimes 1\right\}
\end{aligned}
$$

where we have used equation (4.1) for Φ_{G} and its inverse, thus

$$
\begin{aligned}
\left(\Delta_{G} \otimes 1 \otimes 1\right) & \Phi_{G}^{-1} \cdot\left(\Phi_{G} \otimes 1\right) \\
= & (1 \otimes 1 \otimes G) \cdot\left(\Delta_{G} \otimes \Delta\right) G \cdot\left(\Delta_{G} \otimes 1 \otimes 1\right) \Phi^{-1} \\
& \cdot\left[\left(\Delta_{G} \otimes 1\right) \Delta \otimes 1\right] G^{-1} \cdot\left[\left(\Delta_{G} \otimes 1\right) G^{-1} \otimes 1\right] \cdot(G \otimes 1 \otimes 1) \cdot[(\Delta \otimes 1) G \otimes 1] \\
& \cdot(\Phi \otimes 1) \cdot\left[(1 \otimes \Delta) G^{-1} \otimes 1\right] \cdot\left(1 \otimes G^{-1} \otimes 1\right) \\
= & (G \otimes G) \cdot(\Delta \otimes \Delta) G \cdot(\Delta \otimes 1 \otimes 1) \Phi^{-1} \cdot[(\Delta \otimes 1) \Delta \otimes 1] G^{-1} \\
& \cdot\left[(\Delta \otimes 1) G^{-1} \otimes 1\right] \cdot[(\Delta \otimes 1) G \otimes 1] \cdot(\Phi \otimes 1) \\
& \cdot\left[(1 \otimes \Delta) G^{-1} \otimes 1\right] \cdot\left(1 \otimes G^{-1} \otimes 1\right) \\
= & (G \otimes G) \cdot(\Delta \otimes \Delta) G \cdot(\Delta \otimes 1 \otimes 1) \Phi^{-1} \cdot[(\Delta \otimes 1) \Delta \otimes 1] G^{-1} \\
& \cdot(\Phi \otimes 1) \cdot\left[(1 \otimes \Delta) G^{-1} \otimes 1\right] \cdot\left(1 \otimes G^{-1} \otimes 1\right) \\
\stackrel{(2.1)}{=} & (G \otimes G) \cdot(\Delta \otimes \Delta) G \cdot\left\{(\Delta \otimes 1 \otimes 1) \Phi^{-1} \cdot(\Phi \otimes 1)\right\} \\
& \cdot[(1 \otimes \Delta) \Delta \otimes 1] G^{-1} \cdot\left[(1 \otimes \Delta) G^{-1} \otimes 1\right] \cdot\left(1 \otimes G^{-1} \otimes 1\right)
\end{aligned}
$$

Now using the notation of equation (5.3) (iii), we have

$$
(\Delta \otimes 1 \otimes 1) \Phi^{-1} \cdot(\Phi \otimes 1)=\bar{A}_{i} \otimes \bar{B}_{i} \otimes \bar{C}_{i} \otimes \bar{D}_{i}
$$

so that in the notation of equation (5.8) (i)

$$
\begin{aligned}
\bar{A}_{i}^{G} \otimes \bar{B}_{i}^{G} \otimes & \bar{C}_{i}^{G} \otimes \bar{D}_{i}^{G}=\left(\Delta_{G} \otimes 1 \otimes 1\right) \Phi_{G}^{-1} \cdot\left(\Phi_{G} \otimes 1\right) \\
= & (G \otimes G) \cdot(\Delta \otimes \Delta) G \cdot\left\{\bar{A}_{i} \otimes \bar{B}_{i} \otimes \bar{C}_{i} \otimes \bar{D}_{i}\right\} \cdot[(1 \otimes \Delta) \Delta \otimes 1] G^{-1} \\
& \cdot\left[(1 \otimes \Delta) G^{-1} \otimes 1\right] \cdot\left(1 \otimes G^{-1} \otimes 1\right) \\
= & g_{s} g_{j}^{(1)} \bar{A}_{i} \bar{g}_{l}^{(1)} \bar{g}_{k} \otimes g^{s} g_{j}^{(2)} \bar{B}_{i} \bar{g}_{l(1)}^{(2)} \bar{g}_{(1)}^{k} \bar{g}_{m} \otimes g_{t} g_{(1)}^{j} \bar{C}_{i} \bar{g}_{l(2)}^{(2)} \bar{g}_{(2)}^{k} \bar{g}^{m} \otimes g^{t} g_{(2)}^{j} \bar{D}_{i} \bar{g}^{l},
\end{aligned}
$$

where we have used the obvious notation, so that
$\Delta\left(g_{i}\right)=g_{i}^{(1)} \otimes g_{i}^{(2)}, \quad(1 \otimes \Delta) \Delta\left(g_{i}\right)=g_{i}^{(1)} \otimes \Delta\left(g_{i}^{(2)}\right)=g_{i}^{(1)} \otimes g_{i(1)}^{(2)} \otimes g_{i(2)}^{(2)}, \quad$ etc
and all repeated indices are understood to be summed over. Substituting into equation (5.8) (i) gives

$$
\begin{aligned}
\bar{\gamma}_{G}= & g_{s} g_{j}^{(1)} \bar{A}_{i} \bar{g}_{l}^{(1)} \overline{\bar{g}}_{k} \beta_{G} S\left(g^{t} g_{(2)}^{j} \bar{D}_{i} \bar{g}^{l}\right) \otimes g^{s} g_{j}^{(2)} \bar{B}_{i} \bar{g}_{l(1)}^{(2)} \bar{g}_{(1)}^{k} \bar{g}_{m} \beta_{G} S\left(g_{t} g_{(1)}^{j} \bar{C}_{i} \bar{g}_{l(2)}^{(2)} \bar{g}_{(2)}^{k} \bar{g}^{m}\right) \\
= & g_{s} g_{j}^{(1)} \bar{A}_{i} \bar{g}_{l}^{(1)} \bar{g}_{k} \beta_{G} S\left(g^{t} g_{(2)}^{j} \bar{D}_{\bar{g}} \bar{g}^{l}\right) \\
& \otimes g^{s} g_{j}^{(2)} \bar{B}_{i} \bar{g}_{l(1)}^{(2)} \bar{g}_{(1)}^{k} \bar{g}_{m} \beta_{G} S\left(\bar{g}^{m}\right) S\left(\bar{g}_{(2)}^{k}\right) S\left(\bar{g}_{(2)}^{(2)}\right) S\left(g_{t} g_{(1)}^{j} \bar{C}_{i}\right) .
\end{aligned}
$$

Now using

$$
\begin{equation*}
\bar{g}_{m} \beta_{G} S\left(\bar{g}^{m}\right)=\left(\beta_{G}\right)_{G^{-1}}=\beta_{G^{-1} G}=\beta \tag{5.9}
\end{equation*}
$$

and making repeated use of equation (2.7) gives

$$
\begin{aligned}
\bar{\gamma}_{G}= & g_{s} g_{j}^{(1)} \bar{A}_{i} \bar{g}_{l}^{(1)} \bar{g}_{k} \beta_{G} S\left(g^{t} g_{(2)}^{j} \bar{D}_{i} \bar{g}^{l}\right) \\
& \otimes g^{s} g_{j}^{(2)} \bar{B}_{i} \bar{g}_{l(1)}^{(2)} \bar{g}_{(1)}^{k} \beta S\left(\bar{g}_{(2)}^{k}\right) S\left(\bar{g}_{l(2)}^{(2)}\right) S\left(g_{t} g_{(1)}^{j} \bar{C}_{i}\right) \\
= & g_{s} g_{j}^{(1)} \bar{A}_{i} \bar{g}_{l} \beta_{G} S\left(\bar{g}^{l}\right) S\left(g^{t} g_{(2)}^{j} \bar{D}_{i}\right) \otimes g^{s} g_{j}^{(2)} \bar{B}_{i} \beta S\left(g_{t} g_{(1)}^{j} \bar{C}_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(5.9)}{=} g_{s} g_{j}^{(1)} \bar{A}_{i} \beta S\left(\bar{D}_{i}\right) S\left(g^{t} g_{(2)}^{j}\right) \otimes g^{s} g_{j}^{(2)} \bar{B}_{i} \beta S\left(\bar{C}_{i}\right) S\left(g_{t} g_{(1)}^{j}\right) \\
& =\left(g_{s} g_{j}^{(1)} \otimes g^{s} g_{j}^{(2)}\right) \cdot \bar{\gamma} \cdot(S \otimes S)\left(g^{t} g_{(2)}^{j} \otimes g_{t} g_{(1)}^{j}\right) \\
& =G \cdot \Delta\left(g_{j}\right) \cdot \bar{\gamma} \cdot(S \otimes S)\left(G^{T} \cdot \Delta^{T}\left(g^{j}\right)\right)
\end{aligned}
$$

which proves the result.
We are now in a position to determine the action of an arbitrary twist $G \in H \otimes H$ on the inverse Drinfeld twist F_{δ}^{-1}, given in equation (5.3) (i). Under the twisted structure induced by G, F_{δ}^{-1} is twisted to $\left(F_{\delta}^{G}\right)^{-1} \equiv\left(F_{\delta}^{-1}\right)_{G}$, given as in equation (5.3) (i), but in terms of the twisted structure, so that, with the notation of equation (5.8), we have from (5.3) (i)

$$
\left(F_{\delta}^{G}\right)^{-1}=\Delta_{G}\left(S\left(X_{v}^{G}\right) \alpha_{G} Y_{v}^{G}\right) \cdot \bar{\gamma}_{G} \cdot(S \otimes S) \Delta_{G}^{T}\left(Z_{v}^{G}\right)
$$

with $\bar{\gamma}_{G}$ as in proposition 5.
In obvious notation, we may write
$X_{v}^{G} \otimes Y_{v}^{G} \otimes Z_{v}^{G}=\Phi_{G}=(G \otimes 1) \cdot(\Delta \otimes 1) G \cdot \Phi \cdot(1 \otimes \Delta) G^{-1} \cdot\left(1 \otimes G^{-1}\right)$

$$
=g_{i} g_{j}^{(1)} X_{\nu} \bar{g}_{k} \otimes g^{i} g_{j}^{(2)} Y_{\nu} \bar{g}_{(1)}^{k} \bar{g}_{l} \otimes g^{j} Z_{\nu} \bar{g}_{(2)}^{k} \bar{g}^{l},
$$

which implies

$$
\begin{aligned}
\left(F_{\delta}^{G}\right)^{-1} & =\Delta_{G}\left[S\left(g_{i} g_{j}^{(1)} X_{\nu} \bar{g}_{k}\right) \alpha_{G} g^{i} g_{j}^{(2)} Y_{\nu} \bar{g}_{(1)}^{k} \bar{g}_{l}\right] \cdot \bar{\gamma}_{G} \cdot(S \otimes S) \Delta_{G}^{T}\left(g^{j} Z_{\nu} \bar{g}_{(2)}^{k} \bar{g}^{l}\right) \\
& =\Delta_{G}\left[S\left(X_{\nu} \bar{g}_{k}\right) S\left(g_{j}^{(1)}\right) S\left(g_{i}\right) \alpha_{G} g^{i} g_{j}^{(2)} Y_{\nu} \bar{g}_{(1)}^{k} \bar{g}_{l}\right] \cdot \bar{\gamma}_{G} \cdot(S \otimes S) \Delta_{G}^{T}\left(g^{j} Z_{\nu} \bar{g}_{(2)}^{k} \bar{g}^{l}\right)
\end{aligned}
$$

Using

$$
S\left(g_{i}\right) \alpha_{G} g^{i}=\left(\alpha_{G}\right)_{G^{-1}}=\alpha_{G^{-1} G}=\alpha,
$$

and equation (2.7), then gives

$$
\begin{aligned}
\left(F_{\delta}^{G}\right)^{-1}= & \Delta_{G}\left[S\left(X_{\nu} \bar{g}_{k}\right) \alpha Y_{\nu} \bar{g}_{(1)}^{k} \bar{g}_{l}\right] \cdot \bar{\gamma}_{G} \cdot(S \otimes S) \Delta_{G}^{T}\left(Z_{\nu} \bar{g}_{(2)}^{k} \bar{g}^{l}\right) \\
= & G \cdot \Delta\left[S\left(X_{\nu} \bar{g}_{k}\right) \alpha Y_{\nu} \bar{g}_{(1)}^{k} \bar{g}_{l}\right] \cdot G^{-1} \cdot \bar{\gamma}_{G} \\
& \cdot(S \otimes S)\left(G^{T}\right)^{-1} \cdot(S \otimes S) \Delta^{T}\left(Z_{\nu} \bar{g}_{(2)}^{k} \bar{g}^{l}\right) \cdot(S \otimes S) G^{T} \\
\stackrel{\text { prop..5) }}{=} & G \cdot \Delta\left[S\left(X_{\nu} \bar{g}_{k}\right) \alpha Y_{\nu} \bar{g}_{(1)}^{k} \bar{g}_{l}\right] \cdot \Delta\left(g_{i}\right) \cdot \bar{\gamma} \\
& \cdot(S \otimes S) \Delta^{T}\left(g^{i}\right) \cdot(S \otimes S) \Delta^{T}\left(Z_{\nu} \bar{g}_{(2)}^{k} \bar{g}^{l}\right) \cdot(S \otimes S) G^{T} \\
= & G \cdot \Delta\left[S\left(X_{\nu} \bar{g}_{k}\right) \alpha Y_{\nu} \bar{g}_{(1)}^{k}\right] \cdot \Delta\left(\bar{g}_{l}\right) \Delta\left(g_{i}\right) \cdot \bar{\gamma} \\
& \cdot(S \otimes S) \Delta^{T}\left(g^{i}\right) \cdot(S \otimes S) \Delta^{T}\left(\bar{g}^{l}\right) \cdot(S \otimes S) \Delta^{T}\left(Z_{\nu} \bar{g}_{(2)}^{k}\right) \cdot(S \otimes S) G^{T} \\
= & G \cdot \Delta\left[S\left(X_{\nu} \bar{g}_{k}\right) \alpha Y_{\nu} \bar{g}_{(1)}^{k}\right] \cdot \Delta\left(\bar{g}_{l} g_{i}\right) \cdot \gamma \\
& \cdot(S \otimes S) \Delta^{T}\left(\bar{g}^{l} g^{i}\right) \cdot(S \otimes S) \Delta^{T}\left(Z_{\nu} \bar{g}_{(2)}^{k}\right) \cdot(S \otimes S) G^{T} \\
= & G \cdot \Delta\left[S\left(X_{\nu} \bar{g}_{k}\right) \alpha Y_{v}\right] \cdot \Delta\left(\bar{g}_{(1)}^{k}\right) \cdot \gamma \\
& \cdot(S \otimes S) \Delta^{T}\left(\bar{g}_{(2)}^{k}\right) \cdot(S \otimes S) \Delta^{T}\left(Z_{v}\right) \cdot(S \otimes S) G^{T},
\end{aligned}
$$

where we have used the obvious result that

$$
\bar{g}_{l} g_{i} \otimes \bar{g}^{l} g^{i}=G^{-1} G=1 \otimes 1
$$

It then follows from proposition 3 that

$$
\begin{aligned}
& \left(F_{\delta}^{G}\right)^{-1}=G \cdot \Delta\left[S\left(X_{v}\right) \alpha Y_{\nu}\right] \cdot \bar{\gamma} \cdot(S \otimes S) \Delta^{T}\left(Z_{v}\right) \cdot(S \otimes S) G^{T} \\
& \quad \stackrel{(5.3)(\mathrm{i})}{=} G \cdot F_{\delta}^{-1} \cdot(S \otimes S) G^{T} .
\end{aligned}
$$

We have thus proved
Theorem 4. Let $G \in H \otimes H$ be a twist on a QHA H. Then under the twisted structure induced by G, F_{δ}^{-1} is twisted to

$$
\left(F_{\delta}^{G}\right)^{-1} \equiv\left(F_{\delta}^{-1}\right)_{G}=G \cdot F_{\delta}^{-1} \cdot(S \otimes S) G^{T}
$$

Equivalently, the Drinfeld twist is twisted to

$$
F_{\delta}^{G} \equiv\left(F_{\delta}\right)_{G}=(S \otimes S)\left(G^{T}\right)^{-1} \cdot F_{\delta} \cdot G^{-1}
$$

Corollary. F_{0} as in equation (5.6) is twisted to

$$
F_{0}^{G} \equiv\left(F_{0}\right)_{G}=\left(S^{-1} \otimes S^{-1}\right)\left(G^{T}\right)^{-1} \cdot F_{0} \cdot G^{-1}
$$

Proof. Follows from the definition of $F_{0} \equiv\left(S^{-1} \otimes S^{-1}\right) F_{\delta}^{T}$ and the theorem above.
When H is quasi-triangular, the opposite structure of proposition 1 is obtainable, up to equivalence modulo (S, α, β), via twisting. In such a case, the results of section 3 have further useful consequences.

6. Quasi-triangular QHAs

A QHA H is called quasi-triangular if there exists an invertible element

$$
\mathcal{R}=\sum_{i} e_{i} \otimes e^{i} \in H \otimes H
$$

called the R-matrix, such that
(i) $\quad \Delta^{T}(a) \mathcal{R}=\mathcal{R} \Delta(a), \quad \forall a \in H$,
(ii) $(\Delta \otimes 1) \mathcal{R}=\Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{132} \mathcal{R}_{23} \Phi_{123}^{-1}$,
(iii) $(1 \otimes \Delta) \mathcal{R}=\Phi_{312} \mathcal{R}_{13} \Phi_{213}^{-1} \mathcal{R}_{12} \Phi_{123}$,
where

$$
\mathcal{R}_{12}=e_{i} \otimes e^{i} \otimes 1, \quad \mathcal{R}_{13}=e_{i} \otimes 1 \otimes e^{i}, \quad \text { etc. }
$$

We first summarize some well-known results for quasi-triangular QHAs. It was shown in [13] that

Proposition 1'. With the opposite QHA structure of proposition 1, H is also quasi-triangular with the R-matrix $\mathcal{R}^{T}=T \cdot \mathcal{R}$, called the opposite R-matrix.

It follows from (6.1) (ii, iii) that

$$
(\epsilon \otimes 1) \mathcal{R}=(1 \otimes \epsilon) \mathcal{R}=1
$$

so that \mathcal{R} qualifies as a twist. Moreover, if $F \in H \otimes H$ is any twist then, as shown in [13], H is also quasi-triangular under the twisted structure of equations (4.1), (4.2) with the R-matrix

$$
\begin{equation*}
\mathcal{R}_{F}=F^{T} \mathcal{R} F^{-1} . \tag{6.2}
\end{equation*}
$$

It was shown in [13] that
Proposition 6. With the QHA structure of proposition 2, H is also quasi-triangular with the R-matrix

$$
\mathcal{R}^{\prime}=(S \otimes S) \mathcal{R}
$$

We have seen that the QHA structure of proposition 2 is obtainable by twisting with the Drinfeld twist F_{δ}. It was further shown in [13] that the full structure of proposition 6 is also obtained by twisting with F_{δ} which, in view of equation (6.2), is equivalent to

$$
\begin{equation*}
(S \otimes S) \mathcal{R}=F_{\delta}^{T} \mathcal{R} F_{\delta}^{-1} \tag{6.3}
\end{equation*}
$$

This result in fact follows from the following relation:

$$
(S \otimes S) \mathcal{R} \cdot \gamma=\gamma^{T} \mathcal{R}
$$

where $\gamma^{T}=T \cdot \gamma$, proved in [13]. In view of proposition 3, this last equation is equivalent to

$$
\mathcal{R} \bar{\gamma}=\bar{\gamma}^{T} \cdot(S \otimes S) \mathcal{R}
$$

where $\bar{\gamma}^{T}=T \cdot \bar{\gamma}$, with γ and $\bar{\gamma}$ as in equations (5.2), (5.3).
In view of (6.1) (i), the opposite co-product is obtained from Δ by twisting with \mathcal{R}. In fact, we have the following result proved in [13]:

Proposition 7. The opposite structure of propositions $1,1^{\prime}$ is obtainable by twisting with the R-matrix \mathcal{R} but with antipode S and canonical elements $\alpha_{\mathcal{R}}, \beta_{\mathcal{R}}$, respectively.

Above $\alpha_{\mathcal{R}}, \beta_{\mathcal{R}}$ are given by equation (4.2), so that

$$
\text { (i) } \quad \alpha_{\mathcal{R}}=m \cdot(1 \otimes \alpha)(S \otimes 1) \mathcal{R}^{-1}, \quad \beta_{\mathcal{R}}=m \cdot(1 \otimes \beta)(1 \otimes S) \mathcal{R}
$$

Below we set

$$
\text { (ii) } \mathcal{R}=e_{i} \otimes e^{i}, \quad \mathcal{R}^{-1}=\bar{e}_{i} \otimes \bar{e}^{i}
$$

in terms of which we may write

$$
\begin{equation*}
\text { (iii) } \quad \alpha_{\mathcal{R}}=S\left(\bar{e}_{i}\right) \alpha \bar{e}^{i}, \quad \beta_{\mathcal{R}}=e_{i} \beta S\left(e^{i}\right) . \tag{6.4}
\end{equation*}
$$

Thus with the co-product Δ^{T} and co-associator $\Phi^{T}=\Phi_{321}^{-1}$ of proposition 1, we have two QHA structures with differing quasi-antipodes ($S, \alpha_{\mathcal{R}}, \beta_{\mathcal{R}}$) and ($S^{-1}, \alpha^{T}, \beta^{T}$) where, from proposition $1, \alpha^{T}=S^{-1}(\alpha), \beta^{T}=S^{-1}(\beta)$. It follows from theorem 1 that

Theorem 5. There exists a unique invertible $u \in H$, such that

$$
S(a)=u S^{-1}(a) u^{-1} \quad \text { or } \quad S^{2}(a)=u a u^{-1}, \quad \forall a \in H
$$

and

$$
\begin{equation*}
u S^{-1}(\alpha)=\alpha_{\mathcal{R}}, \quad \beta_{\mathcal{R}} u=S^{-1}(\beta) \tag{6.5}
\end{equation*}
$$

Explicitly,

$$
\begin{align*}
& u=S\left(Y_{v} \beta S\left(Z_{v}\right)\right) \alpha_{\mathcal{R}} X_{v}=S\left(\bar{Z}_{v}\right) \alpha_{\mathcal{R}} \bar{Y}_{v} S^{-1}(\beta) S^{-1}\left(\bar{X}_{v}\right) \\
& u^{-1}=Z_{v} \beta_{\mathcal{R}} S\left(S\left(X_{v}\right) \alpha Y_{v}\right)=S^{-1}\left(\bar{Z}_{v}\right) S^{-1}(\alpha) \bar{Y}_{v} \beta_{\mathcal{R}} S\left(\bar{X}_{v}\right) \tag{6.6}
\end{align*}
$$

Above, we have used the fact that the opposite QHA structure has co-associator $\Phi^{T}=\Phi_{321}^{-1}$ and quasi-antipode $\left(S^{-1}, \alpha^{T}, \beta^{T}\right)$. We have then applied theorem 1 with $(\tilde{S}, \tilde{\alpha}, \tilde{\beta})=\left(S, \alpha_{\mathcal{R}}, \beta_{\mathcal{R}}\right)$ to give the result.

The above gives the u-operator of Drinfeld-Reshetikhin [5, 18]. It differs from, but is related to, the u-operator of Altschuler and Coste [1, 12]. To see how the latter arises, it is easily seen that $\tilde{\mathcal{R}} \equiv\left(\mathcal{R}^{T}\right)^{-1}$ also satisfies equation (6.1) and thus constitutes an R-matrix. Thus proposition 7 and theorem 3 also hold with \mathcal{R} replaced by $\tilde{\mathcal{R}}$. This implies the existence of a unique invertible $\tilde{u} \in H$, such that

$$
S^{2}(a)=\tilde{u} a \tilde{u}^{-1}, \quad \forall a \in H
$$

and

$$
\tilde{u} S^{-1}(\alpha)=\alpha_{\tilde{\mathcal{R}}}, \quad \beta_{\tilde{\mathcal{R}}} \tilde{u}=S^{-1}(\beta)
$$

with $\alpha_{\tilde{\mathcal{R}}}, \beta_{\tilde{\mathcal{R}}}$ as in equation (6.4) but with \mathcal{R} replaced by $\tilde{\mathcal{R}}$. Explicitly we have, in this case,

$$
\begin{align*}
& \tilde{u}=S\left(Y_{v} \beta S\left(Z_{v}\right)\right) \alpha_{\tilde{\mathcal{R}}} X_{v}=S\left(\bar{Z}_{v}\right) \alpha_{\tilde{\mathcal{R}}} \bar{Y}_{v} S^{-1}(\beta) S^{-1}\left(\bar{X}_{v}\right) \\
& \tilde{u}^{-1}=Z_{v} \beta_{\tilde{\mathcal{R}}} S\left(S\left(X_{v}\right) \alpha Y_{v}\right)=S^{-1}\left(\bar{Z}_{v}\right) S^{-1}(\alpha) \bar{Y}_{v} \beta_{\tilde{\mathcal{R}}} S\left(\bar{X}_{v}\right) . \tag{6.7}
\end{align*}
$$

Then, as can be seen from [12] \tilde{u} is precisely the u-operator of Altschuler and Coste.
To see the relation between u and \tilde{u}, we first note that $u S(u)=S(u) u$ is central. This
follows by applying S to $S(a)=u S^{-1}(a) u^{-1}$, giving

$$
S^{2}(a)=S\left(u^{-1}\right) a S(u), \quad \forall a \in H
$$

Before proceeding it is worth noting the following:

Lemma 1.

$$
\begin{array}{lll}
\text { (i) } & \beta_{\tilde{\mathcal{R}}}=S(u) S(\beta), & \alpha_{\tilde{\mathcal{R}}}=S(\alpha) S\left(u^{-1}\right) \\
\text { (ii) } & \beta_{\mathcal{R}}=S(\tilde{u}) S(\beta), & \alpha_{\mathcal{R}}=S(\alpha) S\left(\tilde{u}^{-1}\right) \tag{6.8}
\end{array}
$$

Proof. By symmetry it suffices to prove (i). Now,

$$
\begin{aligned}
\beta_{\tilde{\mathcal{R}}} & =m \cdot(1 \otimes \beta)(1 \otimes S)\left(\mathcal{R}^{T}\right)^{-1}=\bar{e}^{i} \beta S\left(\bar{e}_{i}\right) \\
& \stackrel{(6.5)}{=} \bar{e}^{i} S\left(\beta_{\mathcal{R}} u\right) S\left(\bar{e}_{i}\right)=\bar{e}^{i} S(u) S\left(\beta_{\mathcal{R}}\right) S\left(\bar{e}_{i}\right) \\
& =\bar{e}^{i} S(u) S\left[e_{j} \beta S\left(e^{j}\right)\right] S\left(\bar{e}_{i}\right) \\
& =\bar{e}^{i} S(u) S^{2}\left(e^{j}\right) S(\beta) S\left(e_{j}\right) S\left(\bar{e}_{i}\right) \\
& =S(u) S^{2}\left(\bar{e}^{i}\right) S^{2}\left(e^{j}\right) S(\beta) S\left(e_{j}\right) S\left(\bar{e}_{i}\right) \\
& =S(u) S^{2}\left(\bar{e}^{i} e^{j}\right) S(\beta) S\left(\bar{e}_{i} e_{j}\right)=S(u) S(\beta),
\end{aligned}
$$

where we have used the obvious result

$$
\bar{e}_{i} e_{j} \otimes \bar{e}^{i} e^{j}=\mathcal{R}^{-1} \mathcal{R}=1 \otimes 1
$$

Similarly,

$$
\begin{aligned}
\alpha_{\tilde{\mathcal{R}}} & =m \cdot(1 \otimes \alpha)(S \otimes 1) R^{T}=S\left(e^{i}\right) \alpha e_{i} \\
& \stackrel{(6.5)}{=} S\left(e^{i}\right) S\left(u^{-1} \alpha_{\mathcal{R}}\right) e_{i}=S\left(e^{i}\right) S\left(\alpha_{\mathcal{R}}\right) S\left(u^{-1}\right) e_{i} \\
& =S\left(e^{i}\right) S\left[S\left(\bar{e}_{j}\right) \alpha \bar{e}^{j}\right] S\left(u^{-1}\right) e_{i} \\
& =S\left(e^{i}\right) S\left(\bar{e}^{j}\right) S(\alpha) S^{2}\left(\bar{e}_{j}\right) S\left(u^{-1}\right) e_{i} \\
& =S\left(e^{i}\right) S\left(\bar{e}^{j}\right) S(\alpha) S^{2}\left(\bar{e}_{j}\right) S^{2}\left(e_{i}\right) S\left(u^{-1}\right) \\
& =S\left(\bar{e}^{j} e^{i}\right) S(\alpha) S^{2}\left(\bar{e}_{j} e_{i}\right) S\left(u^{-1}\right)=S(\alpha) S\left(u^{-1}\right) .
\end{aligned}
$$

We are now in a position to prove

Lemma 2.

$$
\tilde{u}=S\left(u^{-1}\right)
$$

Proof. From equation (6.7), we have

$$
\begin{aligned}
& \tilde{u}=S\left(Y_{v} \beta S\left(Z_{v}\right)\right) \alpha_{\tilde{\mathcal{R}}} X_{v} \\
& \stackrel{(6.8)(\mathrm{i})}{=} S\left(Y_{\nu} \beta S\left(Z_{\nu}\right)\right) S(\alpha) S\left(u^{-1}\right) X_{v} \\
& \quad=S\left(Y_{\nu} \beta S\left(Z_{v}\right)\right) S(\alpha) S^{2}\left(X_{v}\right) S\left(u^{-1}\right) \\
& \quad=S\left[S\left(X_{\nu}\right) \alpha Y_{\nu} \beta S\left(Z_{\nu}\right)\right] S\left(u^{-1}\right) \\
& \stackrel{(2.6)}{=} S\left(u^{-1}\right) .
\end{aligned}
$$

The above result clearly shows the connection between the u-operator of theorem 3 and that due to Altschuler and Coste. Obviously, the existence of the u-operator in the quasitriangular case is a direct consequence of theorem 1 and proposition 7 , the latter showing the equivalence of the opposite structure of proposition 1 with that due to twisting with \mathcal{R}. In the case H is not quasi-triangular, this opposite structure is not in general obtainable by a twist.

The operators u and \tilde{u} are special cases of the v operator of theorem 1 , it follows then from theorem 2 that

Theorem 6. The operators u and \tilde{u} are invariant under twisting.
In section 3, we discussed the uniqueness of the quasi-antipode (S, α, β), but nothing has been said about the uniqueness of the twisted structures or the R-matrix in the quasi-triangular case. This is intimately connected with the quasi-cocycle condition to which we now turn.

7. The quasi-cocycle condition

The set of twists on a QHA H forms a group, moreover, the twisted structure of equations (4.1), (4.2) induced on a QHA H preserves this group structure in the following sense.

Lemma 3. Let $F, G \in H \otimes H$ be twists on a QHA H. Then in the notation of equations (4.1), (4.2)
(i) $\Delta_{F G}=\left(\Delta_{G}\right)_{F}, \quad \Phi_{F G}=\left(\Phi_{G}\right)_{F}$,
(ii) $\alpha_{F G}=\left(\alpha_{G}\right)_{F}, \quad \beta_{F G}=\left(\beta_{G}\right)_{F}$.

Moreover, if H is quasi-triangular then

$$
\begin{equation*}
\text { (iii) } \quad \mathcal{R}_{F G}=\left(\mathcal{R}_{G}\right)_{F} . \tag{7.1}
\end{equation*}
$$

In other words, the structure obtained from twisting with G and then with F is the same as twisting with the twist $F G$. It is important that the right-hand side of equation (7.1) is interpreted correctly, e.g. $\left(\Phi_{G}\right)_{F}$ is given as in equation (4.1) but with Φ replaced by Φ_{G} and Δ by Δ_{G}, etc.

Given any QBA H, we may impose on a twist $F \in H \otimes H$ the following condition:

$$
\begin{equation*}
(F \otimes 1) \cdot(\Delta \otimes 1) F \cdot \Phi=\Phi \cdot(1 \otimes F) \cdot(1 \otimes \Delta) F \tag{7.2}
\end{equation*}
$$

which we call the quasi-cocycle condition.
When $\Phi=1 \otimes 1 \otimes 1$ this reduces to the usual cocycle condition on Hopf algebras. In the notation of equation (4.1), the quasi-cocycle condition is equivalent to

$$
\begin{equation*}
\Phi_{F}=\Phi \tag{7.2'}
\end{equation*}
$$

Thus twisting on a QBA by a twist F satisfying the quasi-cocycle condition results in a QBA structure with the same co-associator.

It is thus not surprising that the quasi-cocycle condition (7.2) is intimately related to the uniqueness of twisted structures on a QHA H. Indeed, if $F, G \in H \otimes H$ are twists giving rise to the same QBA structure, so that

$$
\begin{equation*}
\Delta_{F}=\Delta_{G}, \quad \Phi_{F}=\Phi_{G} \tag{7.3}
\end{equation*}
$$

then $C \equiv F^{-1} G$ must commute with the co-product Δ and satisfy the quasi-cocycle condition. Indeed in view of lemma 3, we have

$$
\begin{aligned}
& \Delta_{C}=\Delta_{F^{-1} G}=\left(\Delta_{G}\right)_{F^{-1}} \stackrel{(7.3)}{=}\left(\Delta_{F}\right)_{F^{-1}}=\Delta_{F^{-1} F}=\Delta \\
& \Phi_{C}=\Phi_{F^{-1} G}=\left(\Phi_{G}\right)_{F^{-1}} \stackrel{(7.3)}{=}\left(\Phi_{F}\right)_{F^{-1}}=\Phi_{F^{-1} F}=\Phi .
\end{aligned}
$$

This leads to the following:
Definition 3. A twist $C \in H \otimes H$ on any QBA H is called compatible if
(i) C commutes with the co-product Δ,
(ii) C satisfies the quasi-cocycle condition.

In other words, twisting a QBA H with a compatible twist C gives exactly the same QBA structure. The set of compatible twists on H thus forms a subgroup of the group of twists on H.

Proposition 8. Let $F, G \in H \otimes H$ be twists on a QBA H. Then the twisted structures induced by F and G coincide if and only if there exists a compatible twist $C \in H \otimes H$, such that $G=F C$.

Proof. We have already seen that if F, G give rise to the same QBA structure then $C=F^{-1} G$ is a compatible twist and $G=F C$. Conversely, suppose C is a compatible twist and set $G=F C$. Then,

$$
\begin{aligned}
& \Delta_{G}=\Delta_{F C}=\left(\Delta_{C}\right)_{F}=\Delta_{F} \\
& \Phi_{G}=\Phi_{F C}=\left(\Phi_{C}\right)_{F}=\Phi_{F}
\end{aligned}
$$

so that G gives precisely the same twisted structure as F.
Setting $G=1 \otimes 1$ into the above gives
Corollary. Let $F \in H \otimes H$ be a twist on a QBA H. Then the twisted structure induced by F coincides with the structure on H if and only if F is a compatible twist.

In view of the group properties of twists, the above corollary is equivalent to proposition 8 .
Let H be a quasi-triangular QHA with the R-matrix \mathcal{R} satisfying equation (6.1). From proposition 7, the opposite co-associator $\Phi^{T}=\Phi_{321}^{-1}$ and co-product Δ^{T} are obtained by twisting with \mathcal{R}, so that $\Phi^{T}=\Phi_{\mathcal{R}}$. The proof of this result utilizes only the properties (6.1). Hence, since

$$
\Phi=\Phi_{\mathcal{R}^{-1} \mathcal{R}}=\left(\Phi_{\mathcal{R}}\right)_{\mathcal{R}^{-1}}=\left(\Phi^{T}\right)_{\mathcal{R}^{-1}}
$$

it follows that if Q is another R-matrix for H, i.e. satisfies equation (6.1), then we must have also

$$
\left(\Phi^{T}\right)_{Q^{-1}}=\Phi
$$

Then $Q^{-1} \mathcal{R}$ must qualify as a compatible twist. Indeed, it obviously commutes with Δ, while as to the quasi-cocycle condition, we have

$$
\Phi_{Q^{-1} \mathcal{R}}=\left(\Phi_{\mathcal{R}}\right)_{Q^{-1}}=\left(\Phi^{T}\right)_{Q^{-1}}=\Phi
$$

Note that $\left(Q^{T}\right)^{-1},\left(\mathcal{R}^{T}\right)^{-1}$ also determine R-matrices so the following must all determine compatible twists: $Q^{-1} \mathcal{R}, Q^{T} \mathcal{R}, \mathcal{R}^{-1} Q, \mathcal{R}^{T} Q$. In particular $\mathcal{R}^{T} \mathcal{R}$ must determine a compatible twist, as may be verified directly.

With the notation of section 4 , it is easily seen that the operator

$$
\begin{equation*}
A=\Delta\left(u^{-1}\right) F_{\delta}^{-1}(u \otimes u) F_{0}=F_{\delta}^{-1}(u \otimes u) F_{0} \Delta\left(u^{-1}\right) \tag{7.4}
\end{equation*}
$$

commutes with Δ. This operator appears in the work of Altschuler and Coste [1] in connection with ribbon QHAs. The operator A satisfies the quasi-cocycle condition and thus determines a compatible twist.

For general QBAs H, to see that there are sufficiently many compatible twists, we have
Lemma 4. Let $z \in H$ be an invertible central element. Then,

$$
C=(z \otimes z) \Delta\left(z^{-1}\right)
$$

is a compatible twist.
Proof. Obviously, C commutes with the co-product Δ so it remains to prove that it satisfies the quasi-cocycle condition. To this end note that

$$
\begin{align*}
(C \otimes 1)(\Delta \otimes 1) C & =(z \otimes z \otimes 1)\left(\Delta\left(z^{-1}\right) \otimes 1\right)(\Delta(z) \otimes z)(\Delta \otimes 1) \Delta\left(z^{-1}\right) \\
& =(z \otimes z \otimes z)(\Delta \otimes 1) \Delta\left(z^{-1}\right) \tag{7.5}
\end{align*}
$$

and similarly

$$
\begin{align*}
(1 \otimes C)(1 \otimes \Delta) C & =(1 \otimes z \otimes z)\left(1 \otimes \Delta\left(z^{-1}\right)\right)(z \otimes \Delta(z))(1 \otimes \Delta) \Delta\left(z^{-1}\right) \\
& =(z \otimes z \otimes z)(1 \otimes \Delta) \Delta\left(z^{-1}\right) \tag{7.6}
\end{align*}
$$

thus

$$
\begin{aligned}
(C \otimes 1)(\Delta \otimes 1) C \Phi & \stackrel{(7.5)}{=}(z \otimes z \otimes z)(\Delta \otimes 1) \Delta\left(z^{-1}\right) \Phi \\
& \stackrel{(2.1)}{=}(z \otimes z \otimes z) \Phi(1 \otimes \Delta) \Delta\left(z^{-1}\right) \\
& \stackrel{(7.6)}{=}(z \otimes z \otimes z) \Phi\left(z^{-1} \otimes z^{-1} \otimes z^{-1}\right)(1 \otimes C)(1 \otimes \Delta) C \\
& =\Phi(1 \otimes C)(1 \otimes \Delta) C .
\end{aligned}
$$

With C as in the lemma, we see that

$$
(\epsilon \otimes 1) C=(1 \otimes \epsilon) C=\epsilon(z) .
$$

Thus, strictly speaking, $\epsilon\left(z^{-1}\right) C$ qualifies as a compatible twist.
Following Altschuler and Coste [1], a quasi-triangular QHA is called a ribbon QHA if the operator A of equation (7.4) is given by

$$
A=(v \otimes v) \Delta\left(v^{-1}\right)
$$

for a certain invertible central element v, related to the u-operator u. This is consistent with the lemma above and the fact that A determines a compatible twist.

In the case of ribbon Hopf algebras, we have $\mathcal{R}^{T} \mathcal{R}=(v \otimes v) \Delta\left(v^{-1}\right)$, so that the compatible twist $\mathcal{R}^{T} \mathcal{R}$ is also of the form of lemma 4. This may not be the case for quasitriangular QHAs in general.

It is worth noting that if H is a QHA and $C \in H \otimes H$ a compatible twist then H is also a QHA under the twisted structure induced by C with exactly the same co-product Δ, co-unit ϵ, co-associator Φ, antipode S, but with canonical elements given by equation (4.2); namely,

$$
\alpha_{C}=m \cdot(S \otimes 1)(1 \otimes \alpha) C^{-1}, \quad \beta_{C}=m \cdot(1 \otimes S)(1 \otimes \beta) C
$$

In view of theorem 1 and its corollary, we have immediately
Proposition 9. Suppose $C \in H \otimes H$ is a compatible twist on a $Q H A H$. Then there exists a unique invertible central element $z \in H$, such that

$$
z \alpha=\alpha_{C}, \quad \beta_{C} z=\beta
$$

Explicitly

$$
\begin{aligned}
& z=S\left(X_{v}\right) \alpha_{C} Y_{v} \beta S\left(Z_{v}\right)=\bar{X}_{v} \beta S\left(\bar{Y}_{v}\right) \alpha_{C} \bar{Z}_{v} \\
& z^{-1}=S\left(X_{v}\right) \alpha Y_{v} \beta_{C} S\left(Z_{v}\right)=\bar{X}_{v} \beta_{C} S\left(\bar{Y}_{v}\right) \alpha \bar{Z}_{v}
\end{aligned}
$$

In the case H is quasi-triangular, we have seen that $C=\mathcal{R}^{T} \mathcal{R}$ is a compatible twist. Since the latter form a group, we have the infinite family of compatible twists $C=\left(\mathcal{R}^{T} \mathcal{R}\right)^{m}, m \in \mathbb{Z}$, in which case the central elements $z^{ \pm 1}$ of proposition 9 give the quadratic invariants of [12].

We conclude this section by noting, in the quasi-triangular case, that twisting the Drinfeld twist with the R-matrix \mathcal{R} gives, from theorem 4, the twisted Drinfeld twist

$$
F_{\delta}^{\mathcal{R}} \equiv\left(F_{\delta}\right)_{\mathcal{R}}=(S \otimes S)\left(\mathcal{R}^{T}\right)^{-1} \cdot F_{\delta} \cdot \mathcal{R}^{-1}
$$

On the other hand, since $\left(\mathcal{R}^{T}\right)^{-1}$ is an R-matrix we have, from equation (6.3),

$$
(S \otimes S)\left(\mathcal{R}^{T}\right)^{-1}=F_{\delta}^{T}\left(\mathcal{R}^{T}\right)^{-1} F_{\delta}^{-1}
$$

which implies

$$
F_{\delta}^{\mathcal{R}}=F_{\delta}^{T}\left(\mathcal{R}^{T}\right)^{-1} \cdot \mathcal{R}^{-1}=F_{\delta}^{T}\left(\mathcal{R} \mathcal{R}^{T}\right)^{-1}
$$

where $\mathcal{R} \mathcal{R}^{T}$ and its inverse are compatible twists under the opposite structure. This shows that F_{δ}^{T} will give rise to a Drinfeld twist under the opposite structure of proposition 7 induced by twisting with \mathcal{R} (which has antipode S rather than S^{-1}). Applying T to the equation above gives

$$
\left(F_{\delta}^{R}\right)^{T}=F_{\delta}\left(\mathcal{R}^{T} \mathcal{R}\right)^{-1}
$$

which shows that, since $\mathcal{R}^{T} \mathcal{R}$ and its inverse are compatible twists, $\left(F_{\delta}^{\mathcal{R}}\right)^{T}$ also gives rise to a Drinfeld twist on H.

8. Quasi-dynamical QYBE

Throughout we assume H is a quasi-triangular QHA with the R-matrix \mathcal{R} satisfying (6.1) which we reproduce here:
(i) $\quad \Delta^{T}(a) \mathcal{R}=\mathcal{R} \Delta(a), \quad \forall a \in H$,
(ii) $(\Delta \otimes 1) \mathcal{R}=\Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{132} \mathcal{R}_{23} \Phi_{123}^{-1}$,
(iii) $(1 \otimes \Delta) \mathcal{R}=\Phi_{312} \mathcal{R}_{13} \Phi_{213}^{-1} \mathcal{R}_{12} \Phi_{123}$.

Applying $T \otimes 1$ to (ii) and $1 \otimes T$ to (iii) then gives
(ii') $\quad\left(\Delta^{T} \otimes 1\right) \mathcal{R}=\Phi_{321}^{-1} \mathcal{R}_{23} \Phi_{312} \mathcal{R}_{13} \Phi_{213}^{-1}$,
(iii') $\left(1 \otimes \Delta^{T}\right) \mathcal{R}=\Phi_{321} \mathcal{R}_{12} \Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{132}$.
It follows that

$$
\mathcal{R}_{12}(\Delta \otimes 1) \mathcal{R}=\left(\Delta^{T} \otimes 1\right) \mathcal{R} \cdot \mathcal{R}_{12}
$$

from which we deduce that \mathcal{R} must satisfy the quasi-QYBE:

$$
\begin{equation*}
\mathcal{R}_{12} \Phi_{231}^{-1} \mathcal{R}_{13} \Phi_{132} \mathcal{R}_{23} \Phi_{123}^{-1}=\Phi_{321}^{-1} \mathcal{R}_{23} \Phi_{312} \mathcal{R}_{13} \Phi_{213}^{-1} \mathcal{R}_{12} \tag{8.1}
\end{equation*}
$$

If we twist H with a twist $F \in H \otimes H$ then H is also a quasi-triangular QHA under the twisted structure (4.1), (4.2) induced by F with the universal R-matrix

$$
\mathcal{R}_{F}=F^{T} \mathcal{R} F^{-1}
$$

Following equation (7.2), we say a twist $F(\lambda) \in H \otimes H$ satisfies the shifted quasi-cocycle condition if

$$
\begin{equation*}
[F(\lambda) \otimes 1] \cdot(\Delta \otimes 1) F(\lambda) \cdot \Phi=\Phi \cdot\left[1 \otimes F\left(\lambda+h^{(1)}\right)\right] \cdot(1 \otimes \Delta) F(\lambda) \tag{8.2}
\end{equation*}
$$

where $\lambda \in H$ depends on one (or possibly several) parameters and $h \in H$ is fixed. Alternatively, we may write in obvious notation

$$
\begin{equation*}
F_{12}(\lambda) \cdot(\Delta \otimes 1) F(\lambda) \cdot \Phi=\Phi \cdot F_{23}\left(\lambda+h^{(1)}\right) \cdot(1 \otimes \Delta) F(\lambda) . \tag{8.2'}
\end{equation*}
$$

When $h=0$, this reduces to the quasi-cocycle condition (7.2) satisfied by $F=F(\lambda)$. When $\Phi=1 \otimes 1 \otimes 1$ (i.e., the normal Hopf-algebra case) equation (8.2) reduces to the usual shifted cocycle condition.

Twisting H with a twist F satisfying the (unshifted) quasi-cocycle condition results in a QHA with the same co-associator Φ, co-unit ϵ and antipode S but with the twisted co-product Δ_{F}, R-matrix \mathcal{R}_{F} (and canonical elements α_{F}, β_{F}). We now consider twisting H with a twist $F=F(\lambda)$ satisfying the shifted condition (8.2). Then under this twisted structure H is also a quasi-triangular QHA with the same co-unit ϵ and antipode S but with the co-associator $\Phi(\lambda)=\Phi_{F(\lambda)}$, and the co-product and the R-matrix given by
$\Delta_{\lambda}(a)=F(\lambda) \Delta(a) F(\lambda)^{-1}, \quad \forall a \in H, \quad \mathcal{R}(\lambda)=F^{T}(\lambda) \mathcal{R} F(\lambda)^{-1}$
with canonical elements $\alpha_{\lambda}=\alpha_{F(\lambda)}, \beta_{\lambda}=\beta_{F(\lambda)}$.
In view of equation (8.2'), we have for the co-associator

$$
\begin{align*}
\Phi(\lambda) & =F_{12}(\lambda) \cdot(\Delta \otimes 1) F(\lambda) \cdot \Phi \cdot(1 \otimes \Delta) F(\lambda)^{-1} \cdot F_{23}(\lambda)^{-1} \\
& =\Phi \cdot F_{23}\left(\lambda+h^{(1)}\right) \cdot(1 \otimes \Delta) F(\lambda) \cdot(1 \otimes \Delta) F(\lambda)^{-1} \cdot F_{23}(\lambda)^{-1} \\
& =\Phi \cdot F_{23}\left(\lambda+h^{(1)}\right) \cdot F_{23}(\lambda)^{-1} \tag{8.4}
\end{align*}
$$

which implies

$$
\Phi(\lambda)^{-1}=F_{23}(\lambda) \cdot F_{23}\left(\lambda+h^{(1)}\right)^{-1} \cdot \Phi^{-1} .
$$

In the Hopf-algebra case, equation (8.4) reduces to the expression for $\Phi(\lambda)$ obtained in [13] ($\Phi=1 \otimes 1 \otimes 1$)

Under the above twisted structure equation (6.1) (ii) becomes

$$
\left(\Delta_{\lambda} \otimes 1\right) \mathcal{R}(\lambda)=\Phi_{231}(\lambda)^{-1} \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{132}(\lambda) \cdot \mathcal{R}_{23}(\lambda) \cdot \Phi_{123}^{-1}(\lambda)
$$

Now

$$
\begin{align*}
& \Phi_{132}(\lambda)=(1 \otimes T) \Phi_{123}(\lambda) \\
& \quad \stackrel{(8.4)}{=} \Phi_{132} \cdot F_{23}^{T}\left(\lambda+h^{(1)}\right) \cdot F_{23}^{T}(\lambda)^{-1} \tag{8.5}
\end{align*}
$$

which implies

$$
\begin{aligned}
&\left(\Delta_{\lambda} \otimes 1\right) \mathcal{R}(\lambda)= \Phi_{231}(\lambda)^{-1} \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{132} \cdot F_{23}^{T}\left(\lambda+h^{(1)}\right) \cdot F_{23}^{T}(\lambda)^{-1} \cdot \mathcal{R}_{23}(\lambda) \cdot \Phi_{123}^{-1}(\lambda) \\
& \stackrel{(8.4)}{=} \Phi_{231}(\lambda)^{-1} \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{132} \cdot F_{23}^{T}\left(\lambda+h^{(1)}\right) \\
& \cdot F_{23}^{T}(\lambda)^{-1} \cdot \mathcal{R}_{23}(\lambda) \cdot F_{23}(\lambda) \cdot F_{23}\left(\lambda+h^{(1)}\right)^{-1} \cdot \Phi_{123}^{-1} \\
& \stackrel{(8.3)}{=} \Phi_{231}(\lambda)^{-1} \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{132} \cdot \mathcal{R}_{23}\left(\lambda+h^{(1)}\right) \cdot \Phi_{123}^{-1} .
\end{aligned}
$$

Similarly equation (6.1) (iii) becomes

$$
\left(1 \otimes \Delta_{\lambda}\right) \mathcal{R}(\lambda)=\Phi_{312}(\lambda) \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{213}^{-1}(\lambda) \cdot \mathcal{R}_{12}(\lambda) \cdot \Phi_{123}(\lambda)
$$

Now

$$
\begin{aligned}
\Phi_{312}(\lambda) & =(T \otimes 1)(1 \otimes T) \Phi_{123}(\lambda) \\
& \stackrel{(8.4)}{=}(T \otimes 1)\left[\Phi_{132} \cdot F_{23}^{T}\left(\lambda+h^{(1)}\right) \cdot F_{23}^{T}(\lambda)^{-1}\right] \\
& =\Phi_{312} \cdot F_{13}^{T}\left(\lambda+h^{(2)}\right) \cdot F_{13}^{T}(\lambda)^{-1}
\end{aligned}
$$

while

$$
\begin{aligned}
\Phi_{213}^{-1}(\lambda) & =(T \otimes 1) \Phi(\lambda)^{-1} \\
& \stackrel{(8.4)}{=}(T \otimes 1)\left[F_{23}(\lambda) \cdot F_{23}\left(\lambda+h^{(1)}\right)^{-1} \cdot \Phi^{-1}\right] \\
& =F_{13}(\lambda) \cdot F_{13}\left(\lambda+h^{(2)}\right)^{-1} \cdot \Phi_{213}^{-1} .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\left(1 \otimes \Delta_{\lambda}\right) \mathcal{R}(\lambda)=\Phi_{312} \cdot F_{13}^{T}\left(\lambda+h^{(2)}\right) \cdot F_{13}^{T}(\lambda)^{-1} \cdot \mathcal{R}_{13}(\lambda) \cdot F_{13}(\lambda) \\
\quad \cdot F_{13}\left(\lambda+h^{(2)}\right)^{-1} \cdot \Phi_{213}^{-1} \cdot \mathcal{R}_{12}(\lambda) \cdot \Phi_{123}(\lambda) \\
\stackrel{(8.3)}{=} \Phi_{312} \cdot R_{13}\left(\lambda+h^{(2)}\right) \cdot \Phi_{213}^{-1} \cdot R_{12}(\lambda) \cdot \Phi_{123}(\lambda)
\end{gathered}
$$

We thus arrive at
Lemma 5. $\mathcal{R}(\lambda)$ satisfies the co-product properties
(i) $\quad\left(\Delta_{\lambda} \otimes 1\right) \mathcal{R}(\lambda)=\Phi_{231}^{-1}(\lambda) \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{132} \cdot \mathcal{R}_{23}\left(\lambda+h^{(1)}\right) \cdot \Phi_{123}^{-1}$,
(ii) $\left(1 \otimes \Delta_{\lambda}\right) \mathcal{R}(\lambda)=\Phi_{312} \cdot R_{13}\left(\lambda+h^{(2)}\right) \cdot \Phi_{213}^{-1} \cdot R_{12}(\lambda) \cdot \Phi_{123}(\lambda)$,
(iii) $\left(\Delta_{\lambda}^{T} \otimes 1\right) \mathcal{R}(\lambda)=\Phi_{321}^{-1}(\lambda) \cdot \mathcal{R}_{23}(\lambda) \cdot \Phi_{312} \cdot \mathcal{R}_{13}\left(\lambda+h^{(2)}\right) \cdot \Phi_{213}^{-1}$,
(iv) $\quad\left(1 \otimes \Delta_{\lambda}^{T}\right) \mathcal{R}(\lambda)=\Phi_{321} \cdot R_{12}\left(\lambda+h^{(3)}\right) \cdot \Phi_{231}^{-1} \cdot R_{13}(\lambda) \cdot \Phi_{132}(\lambda)$.

Proof. We have already proved (i) and (ii) while (iii) follows by applying ($T \otimes 1$) to (i) and (iv) by applying $(1 \otimes T)$ to (ii).

We are now in a position to determine the QQYBE (8.1) satisfied by $\mathcal{R}=\mathcal{R}(\lambda)$ for this twisted structure. We have

$$
\begin{aligned}
\mathcal{R}_{23}(\lambda) \cdot & \Phi_{312} \cdot \mathcal{R}_{13}\left(\lambda+h^{(2)}\right) \cdot \Phi_{213}^{-1} \cdot R_{12}(\lambda) \\
& \stackrel{(8.6)(\text { ii) }}{=} \mathcal{R}_{23}(\lambda) \cdot\left(1 \otimes \Delta_{\lambda}\right) \mathcal{R}(\lambda) \cdot \Phi_{123}^{-1}(\lambda) \\
& \stackrel{(6.1)(\text { i) }}{=}\left(1 \otimes \Delta_{\lambda}^{T}\right) \mathcal{R}(\lambda) \cdot \mathcal{R}_{23}(\lambda) \cdot \Phi_{123}^{-1}(\lambda) \\
& \stackrel{(8.6)(\text { iv) }}{=} \Phi_{321} \cdot R_{12}\left(\lambda+h^{(3)}\right) \cdot \Phi_{231}^{-1} \cdot R_{13}(\lambda) \cdot \Phi_{132}(\lambda) \cdot \mathcal{R}_{23}(\lambda) \cdot \Phi_{123}^{-1}(\lambda)
\end{aligned}
$$

where for the last three terms we have

$$
\begin{aligned}
& \Phi_{132}(\lambda) \cdot \mathcal{R}_{23}(\lambda) \cdot \Phi_{123}^{-1}(\lambda) \stackrel{(8.4,8.5)}{=} \Phi_{132} \cdot F_{23}^{T}\left(\lambda+h^{(1)}\right) \cdot F_{23}^{T}(\lambda)^{-1} \\
& \cdot R_{23}(\lambda) \cdot F_{23}(\lambda) \cdot F_{23}\left(\lambda+h^{(1)}\right)^{-1} \cdot \Phi_{123}^{-1} \\
& \stackrel{(8.3)}{=} \Phi_{132} \cdot \mathcal{R}_{23}\left(\lambda+h^{(1)}\right) \cdot \Phi_{123}^{-1} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathcal{R}_{23}(\lambda) \cdot \Phi_{312} \cdot & \mathcal{R}_{13}\left(\lambda+h^{(2)}\right) \cdot \Phi_{213}^{-1} \cdot R_{12}(\lambda) \\
& =\Phi_{321} \cdot \mathcal{R}_{12}\left(\lambda+h^{(3)}\right) \cdot \Phi_{231}^{-1} \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{132} \cdot \mathcal{R}_{23}\left(\lambda+h^{(1)}\right) \cdot \Phi_{123}^{-1} .
\end{aligned}
$$

We thus arrive at
Proposition 10. $\mathcal{R}(\lambda)$ satisfies the quasi-dynamical QYBE

$$
\begin{align*}
\mathcal{R}_{12}\left(\lambda+h^{(3)}\right) & \cdot \Phi_{231}^{-1} \cdot \mathcal{R}_{13}(\lambda) \cdot \Phi_{132} \cdot \mathcal{R}_{23}\left(\lambda+h^{(1)}\right) \cdot \Phi_{123}^{-1} \\
= & \Phi_{321}^{-1} \cdot \mathcal{R}_{23}(\lambda) \cdot \Phi_{312} \cdot \mathcal{R}_{13}\left(\lambda+h^{(2)}\right) \cdot \Phi_{213}^{-1} \cdot \mathcal{R}_{12}(\lambda) . \tag{8.7}
\end{align*}
$$

In the Hopf algebra case ($\Phi=1 \otimes 1 \otimes 1$), equation (8.7) reduces to the usual dynamical QYBE. If we set $h=0$, then equation (8.7) reduces to the quasi-QYBE (8.1) satisfied by $\mathcal{R}=\mathcal{R}(\lambda)$. Hence, the term quasi-dynamical QYBE for (8.7): we could, alternatively, refer to (8.7) as the dynamical quasi-QYBE (dynamical QQYBE), since it is obviously the quasi-Hopf algebra analogue of the usual dynamical QYBE.

With respect to the QHA structure of propositions $2,2^{\prime}$, we have the R-matrices

$$
\mathcal{R}^{\prime}(\lambda)=(S \otimes S) \mathcal{R}(\lambda), \quad \mathcal{R}_{0}(\lambda)=\left(S^{-1} \otimes S^{-1}\right) \mathcal{R}(\lambda)
$$

respectively. Then applying $(S \otimes S \otimes S),\left(S^{-1} \otimes S^{-1} \otimes S^{-1}\right)$ respectively to equation (8.7), it follows that both of these R-matrices satisfy the opposite quasi-dynamical QYBE

$$
\begin{aligned}
\tilde{\mathcal{R}}_{12}(\lambda) \cdot \tilde{\Phi}_{231}^{-1} \cdot \tilde{\mathcal{R}}_{13}\left(\lambda+h^{(2)}\right) \cdot \tilde{\Phi}_{132} \cdot \tilde{\mathcal{R}}_{23}(\lambda) \cdot \tilde{\Phi}_{123}^{-1} \\
\quad=\tilde{\Phi}_{321}^{-1} \cdot \tilde{\mathcal{R}}_{23}\left(\lambda+h^{(1)}\right) \cdot \tilde{\Phi}_{312} \cdot \tilde{\mathcal{R}}_{13}(\lambda) \cdot \tilde{\Phi}_{213}^{-1} \cdot \tilde{\mathcal{R}}_{12}\left(\lambda+h^{(3)}\right)
\end{aligned}
$$

where $\tilde{\Phi}$ is the co-associator of propositions $2,2^{\prime}$ and $\tilde{\mathcal{R}}(\lambda)$ denotes $\mathcal{R}^{\prime}(\lambda), \mathcal{R}_{0}(\lambda)$, respectively. Moreover, applying $(T \otimes 1)\left((1 \otimes T)(T \otimes 1)\right.$ to equation (8.7) it is easily seen that $\mathcal{R}^{T}(\lambda)$ also satisfies the above opposite quasi-dynamical QYBE but with respect to the opposite co-associator Φ^{T} of proposition 1 .

We anticipate that the quasi-dynamical QYBE will play an important role in obtaining elliptic solutions to the QQYBE from trigonometric ones via twisted QUEs. Of particular interest is the quasi-dynamical QYBE for elliptic quantum groups.

References

[1] Altschuler D and Coste A 1992 Quasi-quantum groups, knots, three manifolds and topological field theory Commun. Math. Phys. 150 83-107 (Preprint hep-th/9202047)
[2] Chari V and Pressley A 1994 A Guide to Quantum Groups (Cambridge: Cambridge University Press)
[3] Dijkgraaf R, Pasquier V and Roche P 1990 Quasi-quantum groups related to orbifold models Proc. Int. Coll. on Modern Quantum Field Theory (Bombay: Tata Institute)
[4] Dijkgraaf R, Vafa C, Verlinde E and Verlinde H 1989 The operator algebra of orbifold models Commun. Math. Phys. 123 485-526
[5] Drinfeld V G 1990 On almost cocommutative Hopf algebras Leningrad Math. J. 1 321-42
[6] Drinfeld V G 1990 Quasi-Hopf algebras Leningrad Math. J. 1 1419-57
[7] Drinfeld V G 1991 On quasitriangular quasi-Hopf algebras and a group closely connected with $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ Leningrad Math. J. 2 829-60
[8] Enriquez B and Felder G 1998 Elliptic quantum group $E_{\tau, \eta\left(s l_{2}\right)}$ and quasi-Hopf algebras Commun. Math. Phys. 195 651-89 (Preprint q-alg/9703018)
[9] Foda O, Iohara K, Jimbo M, Kedem R, Miwa T and Yan H 1994 An elliptic quantum algebra for $\widehat{\mathfrak{s l}_{2}}$ Lett. Math. Phys. 32 259-68 (Preprint hep-th/9403094)
[10] Felder G 1995 Elliptic quantum groups Proc. XIth ICMP (Paris, 1994) pp 211-8
[11] Fronsdal C 1997 Quasi-Hopf deformations of quantum groups Lett. Math. Phys. 40 117-34 (Preprint q-alg/9611028)
[12] Gould M D, Zhang Y-Z and Isaac P S 2000 Casimir invariants from quasi-Hopf (super) algebras J. Math. Phys. 41 547-68 (Preprint math.QA/9811052)
[13] Gould M D, Zhang Y-Z and Isaac P S 2001 On quasi-Hopf superalgebras Commun. Math. Phys. 224 341-72 (Preprint math.QA/9811062)
[14] Jimbo M, Odake S, Konno H and Shiraishi J 1999 Quasi-Hopf twistors for elliptic quantum groups Transform. Groups 4 303-27 (Preprint q-alg/9712029)
[15] Links J R, Gould M D and Zhang Y-Z 2000 Twisting invariance of link polynomials derived from ribbon quasi-Hopf algebras J. Math. Phys. 41 5020-32 (Preprint math.QA/9904069)
[16] Mack G and Schomerus V 1991 Quasi quantum group symmetry and local braid relations in the conformal Ising model Phys. Lett. B 267 207-13
[17] Majid S 2000 Foundations of Quantum Group Theory (Cambridge: Cambridge University Press)
[18] Reshetikhin N 1990 Quasitriangle Hopf algebras and invariants of links Leningrad Math. J. 1491-513
[19] Sweedler M E 1969 Hopf Algebras (New York: Benjamin)
[20] Zhang Y-Z and Gould M D 1999 Quasi-Hopf superalgebras and elliptic quantum supergroups J. Math. Phys. 40 5264-82 (Preprint math.QA/9809156)

