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Abstract
The Drinfeld twist for the opposite quasi-Hopf algebra, H cop, is determined and
is shown to be related to the (second) Drinfeld twist on a quasi-Hopf algebra.
The twisted form of the Drinfeld twist is investigated. In the quasi-triangular
case, it is shown that the Drinfeld u-operator arises from the equivalence of
H cop to the quasi-Hopf algebra induced by twisting H with the R-matrix. The
Altschuler–Coste u-operator arises in a similar way and is shown to be closely
related to the Drinfeld u-operator. The quasi-cocycle condition is introduced
and is shown to play a central role in the uniqueness of twisted structures
on quasi-Hopf algebras. A generalization of the dynamical quantum Yang–
Baxter equation, called the quasi-dynamical quantum Yang–Baxter equation,
is introduced.

PACS numbers: 02.10.Hh, 02.20.Uw
Mathematics Subject Classification: 81R50, 16W30

1. Introduction

Quasi-Hopf algebras (QHA) were introduced by Drinfeld [6] as generalizations of Hopf
algebras. QHA are the underlying algebraic structures of elliptic quantum groups [8–11,
14, 20] and hence have an important role in obtaining solutions to the dynamical Yang–Baxter
equation. They arise in conformal field theory [3, 4], algebraic number theory [7] and in the
theory of knots [1, 15, 16].

The antipode S of a Hopf algebra H is uniquely determined as the inverse of the identity
map on H under the convolution product. For a quasi-Hopf algebra, the triple (S, α, β)

consisting of the antipode S and canonical elements α, β ∈ H is termed the quasi-antipode.
The quasi-antipode of a QHA is not unique [2, 6, 17]. However, given two QHAs which differ
only in their quasi-antipodes, there exists a unique invertible element v ∈ H relating them.
Moreover, to each invertible element v ∈ H there corresponds a quasi-antipode, so that the
invertible elements v ∈ H are in bijection with the quasi-antipodes. This allows us to work
with a fixed choice for the quasi-antipode (more precisely, a fixed equivalence class for the
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quasi-antipode). We show that the operator v ∈ H is universal, i.e. invariant under an arbitrary
twist F ∈ H ⊗ H . In the quasi-triangular case, the equivalence of the quasi-antipode of the
opposite QHA H cop and the quasi-antipode induced by twisting H with the R-matrix gives rise
to a specific form of the v operator, which we call the Drinfeld–Reshetikhin [5, 18] u-operator.
The u-operator introduced by Altschuler and Coste [1] in the context of ribbon quasi-Hopf
algebras arises in a similar way and is shown to be simply related to the Drinfeld–Reshetikhin
u-operator. In view of the invariance of the v operators, these u-operators are also invariant
under twisting.

For a Hopf algebra H, the antipode S is both an algebra and a co-algebra anti-
homomorphism. In the QHA case, Drinfeld has shown that the antipode S is a co-algebra
anti-homomorphism only upto conjugation by a twist, Fδ (the Drinfeld twist). Assuming the
antipode S is invertible with inverse S−1, we show that S−1 is a co-algebra anti-homomorphism
upto conjugation by an invertible element F0, which we call the second Drinfeld twist on H.
The form of the Drinfeld twist for the opposite QHA H cop is determined and shown to be
simply related to this second Drinfeld twist. The behaviour of the Drinfeld twist Fδ under an
arbitrary twist G ∈ H ⊗ H is also investigated.

The set of twists on a QHA H form a group. We study a subgroup of the group of twists
on a QHA, namely those that leave the co-product � : H → H ⊗ H and the co-associator
� ∈ H ⊗ H ⊗ H unchanged. These twists are called compatible twists. Twists that leave the
co-associator � unchanged are said to satisfy the quasi-cocycle condition. The quasi-cocycle
condition is intimately related to the uniqueness of the structure obtained by twisting the
quasi-bialgebra part of a QHA. In the quasi-triangular case, we show that RT R and its powers
are compatible twists.

Following on from our considerations of the quasi-cocycle condition, we introduce the
shifted quasi-cocycle condition on a twist F(λ) ∈ H ⊗ H , where λ ∈ H depends on one (or
more) parameter(s). We conclude with the quasi-dynamical quantum Yang–Baxter equation
(QQYBE), which is the quasi-Hopf analogue of the usual dynamical QYBE.

2. Preliminaries

We begin by recalling the definition [6] of a quasi-bialgebra.

Definition 1. A quasi-bialgebra (H,�, ε,�) is a unital associative algebra H over a field F,
equipped with algebra homomorphisms ε : H → F (co-unit), � : H → H ⊗H (co-product)
and an invertible element � ∈ H ⊗ H ⊗ H (co-associator) satisfying

(1 ⊗ �)�(a) = �−1(� ⊗ 1)�(a)�, ∀a ∈ H, (2.1)

(� ⊗ 1 ⊗ 1)� · (1 ⊗ 1 ⊗ �)� = (� ⊗ 1) · (1 ⊗ � ⊗ 1)� · (1 ⊗ �), (2.2)

(ε ⊗ 1)� = 1 = (1 ⊗ ε)�, (2.3)

(1 ⊗ ε ⊗ 1)� = 1. (2.4)

It follows from equations (2.2)–(2.4) that the co-associator � has the additional properties

(ε ⊗ 1 ⊗ 1)� = 1 = (1 ⊗ 1 ⊗ ε)�.

We now fix the notation to be used throughout the paper. For the co-associator, we follow the
notation of [12, 13] and write

� =
∑

ν

Xν ⊗ Yν ⊗ Zν, �−1 =
∑

ν

X̄ν ⊗ Ȳν ⊗ Z̄ν.
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We adopt Sweedler’s [19] notation for the co-product

�(a) =
∑
(a)

a(1) ⊗ a(2), ∀a ∈ H

throughout. Since the co-product is quasi-co-associative, we use the following extension of
Sweedler’s notation:

(1 ⊗ �)�(a) = a(1) ⊗ �(a(2)) = a(1) ⊗ a
(1)

(2) ⊗ a
(2)

(2) ,

(� ⊗ 1)�(a) = �(a(1)) ⊗ a(2) = a
(1)

(1) ⊗ a
(2)

(1) ⊗ a(2).
(2.5)

In general, the summation sign is omitted from expressions with the convention that repeated
indices are to be summed over.

Definition 2. A quasi-Hopf algebra (H,�, ε,�, S, α, β) is a quasi-bialgebra (H,�, ε,�)

equipped with an algebra anti-homomorphism S (antipode) and canonical elements α, β ∈ H ,
such that

S(Xν)αYνβS(Zν) = 1 = X̄νβS(Ȳν)αZ̄ν, (2.6)

S(a(1))αa(2) = ε(a)α, a(1)βS(a(2)) = ε(a)β, ∀a ∈ H. (2.7)

Throughout we assume bijectivity of the antipode S so that S−1 exists. The antipode
equations (2.6), (2.7) imply ε(α) · ε(β) = 1 and ε(S(a)) = ε(S−1(a)) = ε(a),∀a ∈ H . A
triple (S, α, β) satisfying equations (2.6), (2.7) is called a quasi-antipode.

We shall need the following relations:

Xνa ⊗ YνβS(Zν) = a
(1)

(1)Xν ⊗ a
(2)

(1)YνβS(Zν)S(a(2)), ∀a ∈ H, (2.8)

� ⊗ 1
(2.2)= (� ⊗ 1 ⊗ 1)� · (1 ⊗ 1 ⊗ �)� · (1 ⊗ �−1) · (1 ⊗ � ⊗ 1)�−1

= X(1)
ν XµX̄ρ ⊗ X(2)

ν YµX̄σ Ȳ (1)
ρ ⊗ YνZ

(1)
µ Ȳσ Ȳ (2)

ρ ⊗ ZνZ
(2)
µ Z̄σ Z̄ρ, (2.9)

1 ⊗ � = (1 ⊗ � ⊗ 1)�−1 · (�−1 ⊗ 1) · (� ⊗ 1 ⊗ 1)� · (1 ⊗ 1 ⊗ �)�,

= X̄νX̄µX(1)
ρ Xσ ⊗ Ȳ (1)

ν ȲµX(2)
ρ Yσ ⊗ Ȳ (2)

ν Z̄µYρZ
(1)
σ ⊗ Z̄νZρZ

(2)
σ , (2.10)

where we have adopted the notation of equation (2.5) into (2.8) and the obvious notation in
(2.9), (2.10) so that, for example

�(Xν) = X(1)
ν ⊗ X(2)

ν , etc.

Equation (2.8) follows from applying (1 ⊗ m)(1 ⊗ 1 ⊗ βS) to equation (2.1) then using (2.7).

3. Uniqueness of the quasi-antipode

For Hopf algebras, the antipode S is uniquely determined as the inverse of the identity map
on H under the convolution product. The quasi-antipode (S, α, β) for a QHA is not unique.
Nevertheless, it is almost unique as the following result due to Drinfeld [6] (whose proof is
similar to the one given below) shows:

Theorem 1. Suppose H is also a QHA, but with quasi-antipode (S̃, α̃, β̃) satisfying (2.6),
(2.7). Then there exists a unique invertible v ∈ H , such that

vα = α̃, β̃v = β, S̃(a) = vS(a)v−1, ∀a ∈ H. (3.1)

Explicitly

(i) v = S̃(Xν)α̃YνβS(Zν) = S̃(S−1(X̄ν))S̃(S−1(β))S̃(Ȳν)α̃Z̄ν,

(ii) v−1 = S(Xν)αYνβ̃S̃(Zν) = X̄νβ̃S̃(Ȳν)S̃(S−1(α))S̃(S−1(Z̄ν)).
(3.2)
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Proof. We proceed stepwise.
Applying m · (S̃ ⊗ 1)(1 ⊗ α̃) to equation (2.8) gives

S̃(Xνa)α̃YνβS(Zν) = S̃
(
a

(1)

(1)Xν

)
α̃a

(2)

(1)YνβS(Zν)S(a(2)),

so that

S̃(a)v = S̃(Xν)S̃
(
a

(1)

(1)

)
α̃a

(2)

(1)YνβS(Zν)S(a(2))
(2.7)= vS(a), ∀a ∈ H, (3.3)

where m : H ⊗ H → H is the multiplication map m(a ⊗ b) = ab,∀a, b ∈ H .
Next observe, from equation (2.9) that, in view of (2.7),

v ⊗ 1 = S̃
(
X(1)

ν XµX̄ρ

)
α̃X(2)

ν YµX̄σ Ȳ (1)
ρ βS

(
YνZ

(1)
µ Ȳσ Ȳ (2)

ρ

) ⊗ ZνZ
(2)
µ Z̄σ Z̄ρ

= S̃(Xµ)α̃YµX̄σβS
(
Z(1)

µ Ȳσ

) ⊗ Z(2)
µ Z̄σ .

Applying m · (1 ⊗ α) from the left gives

vα = S̃(Xµ)α̃YµX̄σβS
(
Z(1)

µ Ȳσ

)
αZ(2)

µ Z̄σ

= α̃X̄σ βS(Ȳσ )αZ̄σ
(2.6)= α̃. (3.4)

From this it follows that

S̃(S−1(X̄ν)) · S̃(S−1(β)) · S̃(Ȳν)α̃Z̄ν

(3.4)= S̃(S−1(X̄ν)) · S̃(S−1(β))S̃(Ȳν) · vαZ̄ν

(3.3)= v · S(S−1(X̄ν)) · S(S−1(β)) · S(Ȳν)αZ̄ν

= v · X̄νβS(Ȳν)αZ̄ν
2.6= v,

which proves (3.2) (i). To see v is invertible observe that

v · S(Xν)αYνβ̃S̃(Zν)
(3.3)= S̃(Xν)vαYνβ̃S̃(Zν)

(3.4)= S̃(Xν)α̃Yνβ̃S̃(Zν)

(2.6)= 1,

so

v−1 = S(Xν)αYνβ̃S̃(Zν)

as stated.
Now using equation (2.10), we have

1 ⊗ v−1 = X̄νX̄µX(1)
ρ Xσ ⊗ S

(
Ȳ (1)

ν ȲµX(2)
ρ Yσ

)
αȲ (2)

ν Z̄µYρZ̄
(1)
σ β̃S̃

(
Z̄νZρZ

(2)
σ

)
(2.7)= X̄µX(1)

ρ ⊗ S
(
ȲµX(2)

ρ

)
αZ̄µYρβ̃S̃(Zρ).

Applying m · (1 ⊗ β) gives

βv−1 = X̄µX(1)
ρ βS

(
ȲµX(2)

ρ

)
αZ̄µYρβ̃S̃(Zρ)

= X̄µβS(Ȳµ)αZ̄µ · β̃
(2.6)= β̃, (3.5)

which completes the proof of (3.1). As to (3.2) (ii) observe that

X̃νβ̃S̃(Ȳν)S̃(S−1(α))S̃(S−1(Z̄ν))

(3.5)= X̄νβv−1S̃(Ȳν)S̃(S−1(α))S̃(S−1(Z̄ν))

(3.3)= X̄νβS(Ȳν)S(S−1(α))S(S−1(Z̄ν))v
−1

= X̄νβS(Ȳν)αZ̄ν · v−1 (2.6)= v−1



Some twisted results 10127

as required. It finally remains to prove uniqueness. Hence, suppose u ∈ H satisfies

uS(a) = S̃(a)u, ∀a ∈ H, uα = α̃, β̃u = β.

Then,

uv−1 = u · S(Xν)αYνβ̃S̃(Zν)

= S̃(Xν)uαYνβ̃S̃(Zν)

= S̃(Xν)α̃Yνβ̃S̃(Zν)
(2.6)= 1,

which implies u = v as required. �

In the special case S̃ = S, we obtain the following useful result.

Corollary. Suppose H is also a QHA with quasi-antipode (S, α̃, β̃). Then there is a unique
invertible central element v ∈ H , given explicitly by equation (3.2) (i) (with S̃ = S), such that

vα = α̃, β̃v = β.

It thus follows that the triple (S, α, β) satisfying (2.6), (2.7) for a QHA is not unique.
Indeed following theorem 1, for arbitrary invertible v ∈ H , the triple (S̃, α̃, β̃) defined by

S̃(a) = vS(a)v−1, ∀a ∈ H ; α̃ = vα, β̃ = βv−1

is easily seen to satisfy (2.6), (2.7) and thus gives rise to a quasi-antipode (S̃, α̃, β̃). Theorem 1
then shows that all such quasi-antipodes (S̃, α̃, β̃) are obtainable this way; thus, there is a 1–1
correspondence between the latter and invertible v ∈ H . We say that these structures are
equivalent, since they clearly give rise to equivalent QHA structures. Throughout we work
with a fixed choice for the quasi-antipode (S, α, β).

We conclude this section with the following useful result, proved in [13], concerning the
opposite QHA structure on H:

Proposition 1. H is also a QHA, with co-unit ε, under the opposite co-product and co-
associator �T ,�T ≡ �−1

321, respectively, with quasi-antipode (S−1, αT = S−1(α), βT =
S−1(β)).

The QHA H cop ≡ (H,�T , ε,�T , S−1, αT , βT ) is called the opposite QHA structure.
We remark that above we have adopted the notation of [12, 13] so that �T = T · �, where T
is the usual twist map, and

�−1
321 = Z̄ν ⊗ Ȳν ⊗ X̄ν.

This latter notation extends in a natural way and will be employed throughout.

4. Twisting

Let H be a quasi-bialgebra. Then F ∈ H ⊗ H is called a twist if it is invertible and satisfies
the co-unit property

(ε ⊗ 1)F = (1 ⊗ ε)F = 1.

We recall that H is also a QBA with the same co-unit ε but with co-product and co-associator
given by

�F (a) = F�(a)F−1, ∀a ∈ H,

�F = (F ⊗ 1) · (� ⊗ 1)F · � · (1 ⊗ �)F−1 · (1 ⊗ F−1),
(4.1)
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called the twisted structure induced by F. If moreover H is a QHA with quasi-antipode (S, α, β)

then H is also a QHA under the above twisted structure with the same antipode S but with
canonical elements

αF = m · (1 ⊗ α)(S ⊗ 1)F−1, βF = m · (1 ⊗ β)(1 ⊗ S)F, (4.2)

respectively. A detailed proof of these well-known results is given in [20]. We now investigate
the behaviour of the operator v of theorem 1 under the twisted structure induced by F.

4.1. Universality of v

Recall that the operator v is given by

v = S̃(Xν)α̃YνβS(Zν).

Let F ∈ H ⊗ H be an arbitrary twist. We use the following notation for the twist F and its
inverse F−1,

F = fi ⊗ f i, F−1 = f̄ i ⊗ f̄ i .

The twisted form of the co-associator is given by (4.1)

�F = XF
ν ⊗ YF

ν ⊗ ZF
ν = fif

(1)
j Xνf̄ k ⊗ f if

(2)
j Yνf̄

k
(1)f̄ l ⊗ f jZνf̄

k
(2)f̄

l . (4.3)

For the twisted forms of the canonical elements we have from (4.2)

α̃F = m · (1 ⊗ α̃)(S̃ ⊗ 1)F−1 = S̃(f̄ p)α̃f̄ p,

βF = m · (1 ⊗ β)(1 ⊗ S)F = fqβS(f q).
(4.4)

We note that

S̃(fj )α̃F f j (4.4)= S̃(f̄ pfj )α̃f̄ pf j = m · (1 ⊗ α)(S̃ ⊗ 1)(F−1F) = α̃, (4.5)

and similarly,

f̄ jβF S(f̄ j ) = β. (4.6)

The twisted form of v is given by

vF = S̃
(
XF

ν

)
α̃F Y F

ν βF S
(
ZF

ν

)
(4.3)= S̃

(
fif

(1)
j Xνf̄ k

)
α̃F f if

(2)
j Yνf̄

k
(1)f̄ lβF S

(
f jZνf̄

k
(2)f̄

l
)

= S̃
(
f

(1)
j Xνf̄ k

)
S̃(fi)α̃F f if

(2)
j Yνf̄

k
(1)f̄ lβF S(f̄ l)S

(
f jZνf̄

k
(2)

)
(4.5)= S̃

(
f

(1)
j Xνf̄ k

)
α̃f

(2)
j Yνf̄

k
(1)f̄ lβF S(f̄ l)S

(
f jZνf̄

k
(2)

)
(4.6)= S̃

(
f

(1)
j Xνf̄ k

)
α̃f

(2)
j Yνf̄

k
(1)βS

(
f jZνf̄

k
(2)

)
= S̃(Xνf̄ k)S̃

(
f

(1)
j

)
α̃f

(2)
j Yνf̄

k
(1)βS

(
f̄ k

(2)

)
S(f jZν)

= S̃(Xνf̄ k)α̃Yνf̄
k
(1)βS

(
f̄ k

(2)

)
S(Zν)

= S̃(Xν)α̃YνβS(Zν) = v,

where in the last two lines we have used the antipode properties of α, β (2.7) and the co-unit
property of twists. We have thus proved:

Theorem 2. The operator v is universal (i.e., invariant under twisting).
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5. The Drinfeld twists

We turn our attention to the Drinfeld twist for the opposite structure of proposition 1. It is
tempting to assume that FT

δ qualifies as a Drinfeld twist for the opposite structure. However,
this is not true since the antipode for the latter is S−1 rather than S. We shall show that the
Drinfeld twist for the opposite structure is in fact related to the second Drinfeld twist which
we define below. We begin with a review of the Drinfeld twist.

5.1. The Drinfeld twist

Observe that �′ defined by

�′(a) = (S ⊗ S)�T (S−1(a)), ∀a ∈ H (5.1)

also determines a co-product on H. Associated with this co-product, we have a new QHA
structure on H, which was proved in [13] and which we restate here:

Proposition 2. H is also a QHA with the same co-unit ε and antipode S but with co-product
�′, co-associator �′ = (S ⊗ S ⊗ S)�321 and canonical elements α′ = S(β), β ′ = S(α),

respectively.

Drinfeld has proved the remarkable result that this QHA structure is obtained by twisting
with the Drinfeld twist, herein denoted as Fδ , given explicitly by

(i) Fδ = (S ⊗ S)�T (Xν) · γ · �(YνβS(Zν)),

= �′(X̄νβS(Ȳν)) · γ · �(Z̄ν),

where

(ii) γ = S(Bi)αCi ⊗ S(Ai)αDi

with

(iii) Ai ⊗ Bi ⊗ Ci ⊗ Di =



(�−1 ⊗ 1) · (� ⊗ 1 ⊗ 1)�

or
(1 ⊗ �) · (1 ⊗ 1 ⊗ �)�−1.

(5.2)

The inverse of Fδ is given explicitly by

(i) F−1
δ = �(X̄ν) · γ̄ · �′(S(Ȳν)αZ̄ν)

= �(S(Xν)αYν) · γ̄ · (S ⊗ S)�T (Zν),

where

(ii) γ̄ = ĀiβS(D̄i) ⊗ B̄iβS(C̄i)

with

(iii) Āi ⊗ B̄i ⊗ C̄i ⊗ D̄i =



(� ⊗ 1 ⊗ 1)�−1 · (� ⊗ 1)

or
(1 ⊗ 1 ⊗ �)� · (1 ⊗ �−1).

(5.3)

The detailed proof that the QHA structure of proposition 2 is obtained by twisting with Fδ , as
given in (5.2), and in particular

�′(a) = Fδ�(a)F−1
δ , ∀a ∈ H (5.4)

is proved in [13]. We simply state here some properties of γ, γ̄ proved in [13] and which are
crucial to the demonstration of Drinfeld’s result:
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Proposition 3.

(i) (S ⊗ S)�T (a(1)) · γ · �(a(2)) = ε(a)γ, ∀a ∈ H,

(ii) �(a(1)) · γ̄ · (S ⊗ S)�T (a(2)) = ε(a)γ̄ , ∀a ∈ H,

(iii) Fδ�(α) = γ, �(β)F−1
δ = γ̄ .

(5.5)

5.2. The second Drinfeld twist

Replacing S with S−1, we obtain yet another co-product �0 on H:

�0(a) = (S−1 ⊗ S−1)�T (S(a)), ∀a ∈ H. (5.1′)

We have the following analogue of proposition 2, the proof of which parallels that of [13]
proposition 4, but with S and S−1 interchanged:

Proposition 2′. H is also a QHA with the same co-unit ε and antipode S but with co-product
�0, co-associator �0 = (S−1 ⊗ S−1 ⊗ S−1)�321 and canonical elements α0 = S−1(β), β0 =
S−1(α), respectively.

By symmetry, we would expect this structure to be obtainable twisting. Indeed, we have

Theorem 3. The QHA structure of proposition 2′ is obtained by twisting with

F0 ≡ (S−1 ⊗ S−1)F T
δ (5.6)

herein referred to as the second Drinfeld twist, where Fδ is the Drinfeld twist and FT
δ = T ·Fδ.

Proof. It is clear that F0 is invertible with inverse F−1
0 = (S−1 ⊗ S−1)

(
FT

δ

)−1
and qualifies

as a twist. For the co-product, we observe

F0�(a)F−1
0 = (S−1 ⊗ S−1)F T

δ · �(a) · (S−1 ⊗ S−1)
(
FT

δ

)−1

= (S−1 ⊗ S−1) · T · [F−1
δ · (S ⊗ S)�T (a) · Fδ

]
= (S−1 ⊗ S−1) · T · [F−1

δ �′(S(a))Fδ

]
(5.4)= (S−1 ⊗ S−1) · T · �(S(a)) = (S−1 ⊗ S−1)�T (S(a))

(5.1′)= �0(a), ∀a ∈ H.

The co-associator is slightly more complicated though also simple. We have from Drinfeld’s
result

�′ ≡ (S ⊗ S ⊗ S)�321 = (Fδ ⊗ 1) · (� ⊗ 1)Fδ · � · (1 ⊗ �)F−1
δ · (

1 ⊗ F−1
δ

)
which implies

(S ⊗ S ⊗ S)� = [
(Fδ ⊗ 1) · (� ⊗ 1)Fδ · � · (1 ⊗ �)F−1

δ · (
1 ⊗ F−1

δ

)]
321

= (
1 ⊗ FT

δ

) · (1 ⊗ �T )F T
δ · �321 · (

�T ⊗ 1
)
FT

δ

−1 · (
FT

δ

−1 ⊗ 1
)
.

Applying (S−1 ⊗ S−1 ⊗ S−1) gives

� = (
F−1

0 ⊗ 1
) · (�0 ⊗ 1)F−1

0 · �0 · (1 ⊗ �0)F0 · (1 ⊗ F0)

= (� ⊗ 1)F−1
0 · (

F−1
0 ⊗ 1

) · �0 · (1 ⊗ F0) · (1 ⊗ �)F0

with F0 as in the theorem. Thus,

�0 = (F0 ⊗ 1) · (� ⊗ 1)F0 · � · (1 ⊗ �)F−1
0 · (

1 ⊗ F−1
0

)
,

which shows that indeed �0 is obtained from � by twisting with F0. The proof for the
canonical elements is straightforward. �
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5.3. The Drinfeld twists for the opposite structure

Recall that under the opposite structure of proposition 1, H is a QHA with antipode S−1,
co-product �T and co-associator �T = �−1

321. It follows that if F 0
δ is the Drinfeld twist for

this opposite structure then, ∀a ∈ H ,

F 0
δ �T (a)

(
F 0

δ

)−1 = (�T )
′
(a)

= (S−1 ⊗ S−1)�(S(a)) = �T
0 (a)

since S−1 is the antipode for this structure. On the other hand, if F0 is the Drinfeld twist of
equation (5.6), we also have

FT
0 �T (a)

(
FT

0

)−1 = �T
0 (a)

with �0 as in equation (5.1′). Here, we show in fact that F 0
δ = FT

0 .
Before proceeding we note that the Drinfeld twist is given by the canonical expression of

equation (5.2) (i) with γ as in (5.2) (ii) constructed from the operator of (5.2) (iii); namely,

Ai ⊗ Bi ⊗ Ci ⊗ Di =



(�−1 ⊗ 1) · (� ⊗ 1 ⊗ 1)�

or
(1 ⊗ �) · (1 ⊗ 1 ⊗ �)�−1.

This gives rise to two equivalent expansions for γ . Using the first expression we have, in
obvious notation,

Ai ⊗ Bi ⊗ Ci ⊗ Di = (�−1 ⊗ 1) · (� ⊗ 1 ⊗ 1)�

= X̄νX
(1)
µ ⊗ ȲνX

(2)
µ ⊗ Z̄νYµ ⊗ Zµ,

which gives, upon substitution into (5.2) (ii),

γ = S
(
ȲνX

(2)
µ

)
αZ̄νYµ ⊗ S

(
X̄νX

(1)
µ

)
αZµ,

which is the expression obtained in [13]. On the other hand, using the second expression gives

Ai ⊗ Bi ⊗ Ci ⊗ Di = (1 ⊗ �) · (1 ⊗ 1 ⊗ �)�−1

= X̄µ ⊗ XνȲµ ⊗ YνZ̄
(1)
µ ⊗ ZνZ̄

(2)
µ

and substituting into (5.2) (ii) gives the alternative expansion

γ = S(XνȲµ)αYνZ̄
(1)
µ ⊗ S(X̄µ)αZνZ̄

(2)
µ (5.7)

which is equivalent to the expression above [13].
Using (5.2) (i) for the opposite structure, we have for the Drinfeld twist

F 0
δ = (S−1 ⊗ S−1)�

(
X0

ν

) · γ 0 · �T
(
Y 0

ν βT S−1
(
Z0

ν

))
,

where we have used the fact that the co-product for the opposite structure is �T , the antipode
is S−1, with canonical elements αT = S−1(α), βT = S−1(β) and where we have set

X0
ν ⊗ Y 0

ν ⊗ Z0
ν = �T = �−1

321,

which is the opposite co-associator, and where from (5.2) (ii)

γ 0 = S−1
(
B0

i

)
αT C0

i ⊗ S−1
(
A0

i

)
αT D0

i

with

A0
i ⊗ B0

i ⊗ C0
i ⊗ D0

i = [(�T )
−1 ⊗ 1] · (�T ⊗ 1 ⊗ 1)�T

= (�321 ⊗ 1) · (�T ⊗ 1 ⊗ 1)�−1
321.

In obvious notation, the latter is given by

(�321 ⊗ 1) · (�T ⊗ 1 ⊗ 1)�−1
321 = ZνZ̄

(2)
µ ⊗ YνZ̄

(1)
µ ⊗ XνȲµ ⊗ X̄µ
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so that, using αT = S−1(α),

γ 0 = S−1
(
YνZ̄

(1)
µ

)
S−1(α)XνȲµ ⊗ S−1

(
ZνZ̄

(2)
µ

)
S−1(α)X̄µ

(5.7)= (S−1 ⊗ S−1)(γ ).

Thus we may write, using βT = S−1(β),

F 0
δ = (S−1 ⊗ S−1)�

(
X0

ν

) · (S−1 ⊗ S−1)γ · �T
(
Y 0

ν S−1(β)S−1
(
Z0

ν

))
so that, substituting

X0
ν ⊗ Y 0

ν ⊗ Z0
ν = �T = �−1

321 = Z̄ν ⊗ Ȳν ⊗ X̄ν,

gives

F 0
δ = (S−1 ⊗ S−1)�(Z̄ν) · (S−1 ⊗ S−1)γ · �T (ȲνS

−1(β)S−1(X̄ν))

= (S−1 ⊗ S−1) · [(S ⊗ S)�T (ȲνS
−1(X̄νβ)) · γ · �(Z̄ν)]

= (S−1 ⊗ S−1) · [�′(X̄νβS(Ȳν)) · γ · �(Z̄ν)]
(5.2)(i)= (S−1 ⊗ S−1)Fδ

(5.6)= FT
0 .

Thus, we have proved

Proposition 4. The Drinfeld twist for the opposite QHA structure of proposition 1 is given
explicitly by

F 0
δ = (S−1 ⊗ S−1)Fδ = FT

0 .

To see how FT
δ fits into the picture, we need to consider the second Drinfeld twist F0 of

theorem 3 associated with the co-product of equation (5.1′). We have immediately from
proposition 4

Corollary. The second Drinfeld twist for the opposite structure is FT
δ .

Proof. Since the antipode for the opposite structure is S−1, theorem 3 implies that the second
Drinfeld twist for this structure is (S⊗S)

(
F 0

δ

)T
, where F 0

δ is the Drinfeld twist for the opposite
structure, given explicitly in proposition 4. It follows that the second Drinfeld twist for the
opposite structure is

(S ⊗ S) · [
(S−1 ⊗ S−1)F T

δ

] = FT
δ . �

5.4. Twisting the Drinfeld twist

It is first useful to determine the behaviour of γ̄ in equation (5.3) (ii) under an arbitrary twist
G ∈ H ⊗ H . Under the twisted structure induced by G, the operator γ̄ is twisted to γ̄G, given
by equation (5.3) (ii, iii) for the twisted structure, so that

(i) γ̄G = ĀG
i βGS

(
D̄G

i

) ⊗ B̄G
i βGS

(
C̄G

i

)
where

(ii) ĀG
i ⊗ B̄G

i ⊗ C̄G
i ⊗ D̄G

i = (�G ⊗ 1 ⊗ 1)�−1
G · (�G ⊗ 1). (5.8)

We have

Proposition 5. Let G = gi ⊗ gi ∈ H ⊗ H be a twist on a QHA H. Then,

γ̄G = G · �(gi) · γ̄ · (S ⊗ S)(GT �T (gi)).
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Proof. Throughout we write

G−1 = ḡi ⊗ ḡi .

For the RHS of equation (5.8) (ii), we have

(�G ⊗ 1 ⊗ 1)�−1
G · (�G ⊗ 1) = (�G ⊗ 1 ⊗ 1) · [(1 ⊗ G) · (1 ⊗ �)G · �−1 · (� ⊗ 1)G−1

· (G−1 ⊗ 1)] · {[(G ⊗ 1) · (� ⊗ 1)G · � · (1 ⊗ �)G−1 · (1 ⊗ G−1)] ⊗ 1},
where we have used equation (4.1) for �G and its inverse, thus

(�G ⊗ 1 ⊗ 1)�−1
G · (�G ⊗ 1)

= (1 ⊗ 1 ⊗ G) · (�G ⊗ �)G · (�G ⊗ 1 ⊗ 1)�−1

· [(�G ⊗ 1)� ⊗ 1]G−1 · [(�G ⊗ 1)G−1 ⊗ 1] · (G ⊗ 1 ⊗ 1) · [(� ⊗ 1)G ⊗ 1]

· (� ⊗ 1) · [(1 ⊗ �)G−1 ⊗ 1] · (1 ⊗ G−1 ⊗ 1)

= (G ⊗ G) · (� ⊗ �)G · (� ⊗ 1 ⊗ 1)�−1 · [(� ⊗ 1)� ⊗ 1]G−1

· [(� ⊗ 1)G−1 ⊗ 1] · [(� ⊗ 1)G ⊗ 1] · (� ⊗ 1)

· [(1 ⊗ �)G−1 ⊗ 1] · (1 ⊗ G−1 ⊗ 1)

= (G ⊗ G) · (� ⊗ �)G · (� ⊗ 1 ⊗ 1)�−1 · [(� ⊗ 1)� ⊗ 1]G−1 ·
· (� ⊗ 1) · [(1 ⊗ �)G−1 ⊗ 1] · (1 ⊗ G−1 ⊗ 1)

(2.1)= (G ⊗ G) · (� ⊗ �)G · {(� ⊗ 1 ⊗ 1)�−1 · (� ⊗ 1)}
· [(1 ⊗ �)� ⊗ 1]G−1 · [(1 ⊗ �)G−1 ⊗ 1] · (1 ⊗ G−1 ⊗ 1).

Now using the notation of equation (5.3) (iii), we have

(� ⊗ 1 ⊗ 1)�−1 · (� ⊗ 1) = Āi ⊗ B̄i ⊗ C̄i ⊗ D̄i

so that in the notation of equation (5.8) (i)

ĀG
i ⊗ B̄G

i ⊗ C̄G
i ⊗ D̄G

i = (�G ⊗ 1 ⊗ 1)�−1
G · (�G ⊗ 1)

= (G ⊗ G) · (� ⊗ �)G · {Āi ⊗ B̄i ⊗ C̄i ⊗ D̄i} · [(1 ⊗ �)� ⊗ 1]G−1

· [(1 ⊗ �)G−1 ⊗ 1] · (1 ⊗ G−1 ⊗ 1)

= gsg
(1)
j Āi ḡ

(1)
l ḡk ⊗ gsg

(2)
j B̄i ḡ

(2)

l(1)ḡ
k
(1)ḡm ⊗ gtg

j

(1)C̄i ḡ
(2)

l(2)ḡ
k
(2)ḡ

m ⊗ gtg
j

(2)D̄i ḡ
l ,

where we have used the obvious notation, so that

�(gi) = g
(1)
i ⊗ g

(2)
i , (1 ⊗ �)�(gi) = g

(1)
i ⊗ �

(
g

(2)
i

) = g
(1)
i ⊗ g

(2)

i(1) ⊗ g
(2)

i(2), etc

and all repeated indices are understood to be summed over. Substituting into equation (5.8)
(i) gives

γ̄G = gsg
(1)
j Āi ḡ

(1)
l ḡkβGS

(
gtg

j

(2)D̄i ḡ
l
) ⊗ gsg

(2)
j B̄i ḡ

(2)

l(1)ḡ
k
(1)ḡmβGS

(
gtg

j

(1)C̄i ḡ
(2)

l(2)ḡ
k
(2)ḡ

m
)

= gsg
(1)
j Āi ḡ

(1)
l ḡkβGS

(
gtg

j

(2)D̄i ḡ
l
)

⊗ gsg
(2)
j B̄i ḡ

(2)

l(1)ḡ
k
(1)ḡmβGS(ḡm)S

(
ḡk

(2)

)
S
(
ḡ

(2)

l(2)

)
S
(
gtg

j

(1)C̄i

)
.

Now using

ḡmβGS(ḡm) = (βG)G−1 = βG−1G = β (5.9)

and making repeated use of equation (2.7) gives

γ̄G = gsg
(1)
j Āi ḡ

(1)
l ḡkβGS

(
gtg

j

(2)D̄i ḡ
l
)

⊗ gsg
(2)
j B̄i ḡ

(2)

l(1)ḡ
k
(1)βS

(
ḡk

(2)

)
S
(
ḡ

(2)

l(2)

)
S
(
gtg

j

(1)C̄i

)
= gsg

(1)
j Āi ḡlβGS(ḡl)S

(
gtg

j

(2)D̄i

) ⊗ gsg
(2)
j B̄iβS

(
gtg

j

(1)C̄i

)
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(5.9)= gsg
(1)
j ĀiβS(D̄i)S

(
gtg

j

(2)

) ⊗ gsg
(2)
j B̄iβS(C̄i)S

(
gtg

j

(1)

)
(5.3)(ii)= (

gsg
(1)
j ⊗ gsg

(2)
j

) · γ̄ · (S ⊗ S)
(
gtg

j

(2) ⊗ gtg
j

(1)

)
= G · �(gj ) · γ̄ · (S ⊗ S)(GT · �T (gj ))

which proves the result. �

We are now in a position to determine the action of an arbitrary twist G ∈ H ⊗ H on the
inverse Drinfeld twist F−1

δ , given in equation (5.3) (i). Under the twisted structure induced

by G,F−1
δ is twisted to

(
FG

δ

)−1 ≡ (
F−1

δ

)
G

, given as in equation (5.3) (i), but in terms of the
twisted structure, so that, with the notation of equation (5.8), we have from (5.3) (i)(

FG
δ

)−1 = �G

(
S
(
XG

ν

)
αGYG

ν

) · γ̄G · (S ⊗ S)�T
G

(
ZG

ν

)
with γ̄G as in proposition 5.

In obvious notation, we may write

XG
ν ⊗ YG

ν ⊗ ZG
ν = �G = (G ⊗ 1) · (� ⊗ 1)G · � · (1 ⊗ �)G−1 · (1 ⊗ G−1)

= gig
(1)
j Xνḡk ⊗ gig

(2)
j Yνḡ

k
(1)ḡl ⊗ gjZνḡ

k
(2)ḡ

l ,

which implies(
FG

δ

)−1 = �G

[
S
(
gig

(1)
j Xνḡk

)
αGgig

(2)
j Yνḡ

k
(1)ḡl

] · γ̄G · (S ⊗ S)�T
G

(
gjZνḡ

k
(2)ḡ

l
)

= �G

[
S(Xνḡk)S

(
g

(1)
j

)
S(gi)αGgig

(2)
j Yνḡ

k
(1)ḡl

] · γ̄G · (S ⊗ S)�T
G

(
gjZνḡ

k
(2)ḡ

l
)
.

Using

S(gi)αGgi = (αG)G−1 = αG−1G = α,

and equation (2.7), then gives(
FG

δ

)−1 = �G

[
S(Xνḡk)αYνḡ

k
(1)ḡl

] · γ̄G · (S ⊗ S)�T
G

(
Zνḡ

k
(2)ḡ

l
)

= G · �
[
S(Xνḡk)αYνḡ

k
(1)ḡl

] · G−1 · γ̄G

· (S ⊗ S)(GT )−1 · (S ⊗ S)�T
(
Zνḡ

k
(2)ḡ

l
) · (S ⊗ S)GT

prop.(5)= G · �
[
S(Xνḡk)αYνḡ

k
(1)ḡl

] · �(gi) · γ̄

· (S ⊗ S)�T (gi) · (S ⊗ S)�T
(
Zνḡ

k
(2)ḡ

l
) · (S ⊗ S)GT

= G · �
[
S(Xνḡk)αYνḡ

k
(1)

] · �(ḡl)�(gi) · γ̄

· (S ⊗ S)�T (gi) · (S ⊗ S)�T (ḡl) · (S ⊗ S)�T
(
Zνḡ

k
(2)

) · (S ⊗ S)GT

= G · �
[
S(Xνḡk)αYνḡ

k
(1)

] · �(ḡlgi) · γ

· (S ⊗ S)�T (ḡlgi) · (S ⊗ S)�T (Zνḡ
k
(2)) · (S ⊗ S)GT

= G · �[S(Xνḡk)αYν] · �
(
ḡk

(1)

) · γ

· (S ⊗ S)�T
(
ḡk

(2)

) · (S ⊗ S)�T (Zν) · (S ⊗ S)GT ,

where we have used the obvious result that

ḡlgi ⊗ ḡlgi = G−1G = 1 ⊗ 1.

It then follows from proposition 3 that(
FG

δ

)−1 = G · �[S(Xν)αYν] · γ̄ · (S ⊗ S)�T (Zν) · (S ⊗ S)GT

(5.3)(i)= G · F−1
δ · (S ⊗ S)GT .
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We have thus proved

Theorem 4. Let G ∈ H ⊗ H be a twist on a QHA H. Then under the twisted structure
induced by G,F−1

δ is twisted to(
FG

δ

)−1 ≡ (
F−1

δ

)
G

= G · F−1
δ · (S ⊗ S)GT .

Equivalently, the Drinfeld twist is twisted to

FG
δ ≡ (Fδ)G = (S ⊗ S)(GT )−1 · Fδ · G−1.

Corollary. F0 as in equation (5.6) is twisted to

FG
0 ≡ (F0)G = (S−1 ⊗ S−1)(GT )−1 · F0 · G−1.

Proof. Follows from the definition of F0 ≡ (S−1 ⊗ S−1)F T
δ and the theorem above. �

When H is quasi-triangular, the opposite structure of proposition 1 is obtainable, up to
equivalence modulo (S, α, β), via twisting. In such a case, the results of section 3 have further
useful consequences.

6. Quasi-triangular QHAs

A QHA H is called quasi-triangular if there exists an invertible element

R =
∑

i

ei ⊗ ei ∈ H ⊗ H

called the R-matrix, such that

(i) �T (a)R = R�(a), ∀a ∈ H,

(ii) (� ⊗ 1)R = �−1
231R13�132R23�

−1
123, (6.1)

(iii) (1 ⊗ �)R = �312R13�
−1
213R12�123,

where

R12 = ei ⊗ ei ⊗ 1, R13 = ei ⊗ 1 ⊗ ei, etc.

We first summarize some well-known results for quasi-triangular QHAs. It was shown in
[13] that

Proposition 1′. With the opposite QHA structure of proposition 1, H is also quasi-triangular
with the R-matrix RT = T · R, called the opposite R-matrix.

It follows from (6.1) (ii, iii) that

(ε ⊗ 1)R = (1 ⊗ ε)R = 1

so that R qualifies as a twist. Moreover, if F ∈ H ⊗ H is any twist then, as shown in [13], H
is also quasi-triangular under the twisted structure of equations (4.1), (4.2) with the R-matrix

RF = FT RF−1. (6.2)

It was shown in [13] that

Proposition 6. With the QHA structure of proposition 2, H is also quasi-triangular with the
R-matrix

R′ = (S ⊗ S)R.
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We have seen that the QHA structure of proposition 2 is obtainable by twisting with the
Drinfeld twist Fδ . It was further shown in [13] that the full structure of proposition 6 is also
obtained by twisting with Fδ which, in view of equation (6.2), is equivalent to

(S ⊗ S)R = FT
δ RF−1

δ . (6.3)

This result in fact follows from the following relation:

(S ⊗ S)R · γ = γ T R,

where γ T = T · γ , proved in [13]. In view of proposition 3, this last equation is equivalent to

Rγ̄ = γ̄ T · (S ⊗ S)R,

where γ̄ T = T · γ̄ , with γ and γ̄ as in equations (5.2), (5.3).
In view of (6.1) (i), the opposite co-product is obtained from � by twisting with R. In

fact, we have the following result proved in [13]:

Proposition 7. The opposite structure of propositions 1, 1′ is obtainable by twisting with the
R-matrix R but with antipode S and canonical elements αR, βR, respectively.

Above αR, βR are given by equation (4.2), so that

(i) αR = m · (1 ⊗ α)(S ⊗ 1)R−1, βR = m · (1 ⊗ β)(1 ⊗ S)R.

Below we set

(ii) R = ei ⊗ ei, R−1 = ēi ⊗ ēi

in terms of which we may write

(iii) αR = S(ēi)αēi , βR = eiβS(ei). (6.4)

Thus with the co-product �T and co-associator �T = �−1
321 of proposition 1, we have two

QHA structures with differing quasi-antipodes (S, αR, βR) and (S−1, αT , βT ) where, from
proposition 1, αT = S−1(α), βT = S−1(β). It follows from theorem 1 that

Theorem 5. There exists a unique invertible u ∈ H , such that

S(a) = uS−1(a)u−1 or S2(a) = uau−1, ∀a ∈ H

and

uS−1(α) = αR, βRu = S−1(β). (6.5)

Explicitly,

u = S(YνβS(Zν))αRXν = S(Z̄ν)αRȲνS
−1(β)S−1(X̄ν)

u−1 = ZνβRS(S(Xν)αYν) = S−1(Z̄ν)S
−1(α)ȲνβRS(X̄ν).

(6.6)

Above, we have used the fact that the opposite QHA structure has co-associator
�T = �−1

321 and quasi-antipode (S−1, αT , βT ). We have then applied theorem 1 with
(S̃, α̃, β̃) = (S, αR, βR) to give the result.

The above gives the u-operator of Drinfeld–Reshetikhin [5, 18]. It differs from, but is
related to, the u-operator of Altschuler and Coste [1, 12]. To see how the latter arises, it is
easily seen that R̃ ≡ (RT )−1 also satisfies equation (6.1) and thus constitutes an R-matrix.
Thus proposition 7 and theorem 3 also hold with R replaced by R̃. This implies the existence
of a unique invertible ũ ∈ H , such that

S2(a) = ũaũ−1, ∀a ∈ H
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and

ũS−1(α) = αR̃, βR̃ũ = S−1(β)

with αR̃, βR̃ as in equation (6.4) but with R replaced by R̃. Explicitly we have, in this case,

ũ = S(YνβS(Zν))αR̃Xν = S(Z̄ν)αR̃ȲνS
−1(β)S−1(X̄ν)

ũ−1 = ZνβR̃S(S(Xν)αYν) = S−1(Z̄ν)S
−1(α)ȲνβR̃S(X̄ν).

(6.7)

Then, as can be seen from [12] ũ is precisely the u-operator of Altschuler and Coste.
To see the relation between u and ũ, we first note that uS(u) = S(u)u is central. This

follows by applying S to S(a) = uS−1(a)u−1, giving

S2(a) = S(u−1)aS(u), ∀a ∈ H.

Before proceeding it is worth noting the following:

Lemma 1.
(i) βR̃ = S(u)S(β), αR̃ = S(α)S(u−1),

(ii) βR = S(ũ)S(β), αR = S(α)S(ũ−1).
(6.8)

Proof. By symmetry it suffices to prove (i). Now,

βR̃ = m · (1 ⊗ β)(1 ⊗ S)(RT )−1 = ēiβS(ēi)

(6.5)= ēiS(βRu)S(ēi) = ēiS(u)S(βR)S(ēi)

= ēiS(u)S[ejβS(ej )]S(ēi)

= ēiS(u)S2(ej )S(β)S(ej )S(ēi)

= S(u)S2(ēi)S2(ej )S(β)S(ej )S(ēi)

= S(u)S2(ēiej )S(β)S(ēiej ) = S(u)S(β),

where we have used the obvious result

ēiej ⊗ ēiej = R−1R = 1 ⊗ 1.

Similarly,

αR̃ = m · (1 ⊗ α)(S ⊗ 1)RT = S(ei)αei

(6.5)= S(ei)S(u−1αR)ei = S(ei)S(αR)S(u−1)ei

= S(ei)S[S(ēj )αēj ]S(u−1)ei

= S(ei)S(ēj )S(α)S2(ēj )S(u−1)ei

= S(ei)S(ēj )S(α)S2(ēj )S
2(ei)S(u−1)

= S(ēj ei)S(α)S2(ēj ei)S(u−1) = S(α)S(u−1). �
We are now in a position to prove

Lemma 2.
ũ = S(u−1)

Proof. From equation (6.7), we have

ũ = S(YνβS(Zν))αR̃Xν

(6.8)(i)= S(YνβS(Zν))S(α)S(u−1)Xν

= S(YνβS(Zν))S(α)S2(Xν)S(u−1)

= S[S(Xν)αYνβS(Zν)]S(u−1)

(2.6)= S(u−1). �
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The above result clearly shows the connection between the u-operator of theorem 3 and
that due to Altschuler and Coste. Obviously, the existence of the u-operator in the quasi-
triangular case is a direct consequence of theorem 1 and proposition 7, the latter showing the
equivalence of the opposite structure of proposition 1 with that due to twisting with R. In the
case H is not quasi-triangular, this opposite structure is not in general obtainable by a twist.

The operators u and ũ are special cases of the v operator of theorem 1, it follows then
from theorem 2 that

Theorem 6. The operators u and ũ are invariant under twisting.

In section 3, we discussed the uniqueness of the quasi-antipode (S, α, β), but nothing has
been said about the uniqueness of the twisted structures or the R-matrix in the quasi-triangular
case. This is intimately connected with the quasi-cocycle condition to which we now turn.

7. The quasi-cocycle condition

The set of twists on a QHA H forms a group, moreover, the twisted structure of equations (4.1),
(4.2) induced on a QHA H preserves this group structure in the following sense.

Lemma 3. Let F,G ∈ H ⊗H be twists on a QHA H. Then in the notation of equations (4.1),
(4.2)

(i) �FG = (�G)F , �FG = (�G)F ,

(ii) αFG = (αG)F , βFG = (βG)F .

Moreover, if H is quasi-triangular then

(iii) RFG = (RG)F . (7.1)

In other words, the structure obtained from twisting with G and then with F is the same
as twisting with the twist FG. It is important that the right-hand side of equation (7.1) is
interpreted correctly, e.g. (�G)F is given as in equation (4.1) but with � replaced by �G and
� by �G, etc.

Given any QBA H, we may impose on a twist F ∈ H ⊗ H the following condition:

(F ⊗ 1) · (� ⊗ 1)F · � = � · (1 ⊗ F) · (1 ⊗ �)F (7.2)

which we call the quasi-cocycle condition.
When � = 1 ⊗ 1 ⊗ 1 this reduces to the usual cocycle condition on Hopf algebras. In

the notation of equation (4.1), the quasi-cocycle condition is equivalent to

�F = �. (7.2′)
Thus twisting on a QBA by a twist F satisfying the quasi-cocycle condition results in a QBA
structure with the same co-associator.

It is thus not surprising that the quasi-cocycle condition (7.2) is intimately related to the
uniqueness of twisted structures on a QHA H. Indeed, if F,G ∈ H ⊗ H are twists giving rise
to the same QBA structure, so that

�F = �G, �F = �G (7.3)

then C ≡ F−1G must commute with the co-product � and satisfy the quasi-cocycle condition.
Indeed in view of lemma 3, we have

�C = �F−1G = (�G)F−1
(7.3)= (�F )F−1 = �F−1F = �

�C = �F−1G = (�G)F−1
(7.3)= (�F )F−1 = �F−1F = �.
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This leads to the following:

Definition 3. A twist C ∈ H ⊗ H on any QBA H is called compatible if

(i) Ccommutes with the co-product �,

(ii) Csatisfies the quasi-cocycle condition.

In other words, twisting a QBA H with a compatible twist C gives exactly the same QBA
structure. The set of compatible twists on H thus forms a subgroup of the group of twists
on H.

Proposition 8. Let F,G ∈ H ⊗H be twists on a QBA H. Then the twisted structures induced
by F and G coincide if and only if there exists a compatible twist C ∈ H ⊗ H , such that
G = FC.

Proof. We have already seen that if F,G give rise to the same QBA structure then C = F−1G

is a compatible twist and G = FC. Conversely, suppose C is a compatible twist and set
G = FC. Then,

�G = �FC = (�C)F = �F

�G = �FC = (�C)F = �F ,

so that G gives precisely the same twisted structure as F. �

Setting G = 1 ⊗ 1 into the above gives

Corollary. Let F ∈ H ⊗ H be a twist on a QBA H. Then the twisted structure induced by F
coincides with the structure on H if and only if F is a compatible twist.

In view of the group properties of twists, the above corollary is equivalent to proposition 8.
Let H be a quasi-triangular QHA with the R-matrix R satisfying equation (6.1). From

proposition 7, the opposite co-associator �T = �−1
321 and co-product �T are obtained by

twisting with R, so that �T = �R. The proof of this result utilizes only the properties (6.1).
Hence, since

� = �R−1R = (�R)R−1 = (�T )R−1

it follows that if Q is another R-matrix for H, i.e. satisfies equation (6.1), then we must have
also

(�T )Q−1 = �.

Then Q−1R must qualify as a compatible twist. Indeed, it obviously commutes with �, while
as to the quasi-cocycle condition, we have

�Q−1R = (�R)Q−1 = (�T )Q−1 = �.

Note that (QT )−1, (RT )−1 also determine R-matrices so the following must all determine
compatible twists: Q−1R,QT R,R−1Q,RT Q. In particular RT R must determine a
compatible twist, as may be verified directly.

With the notation of section 4, it is easily seen that the operator

A = �(u−1)F−1
δ (u ⊗ u)F0 = F−1

δ (u ⊗ u)F0�(u−1) (7.4)

commutes with �. This operator appears in the work of Altschuler and Coste [1] in connection
with ribbon QHAs. The operator A satisfies the quasi-cocycle condition and thus determines
a compatible twist.
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For general QBAs H, to see that there are sufficiently many compatible twists, we have

Lemma 4. Let z ∈ H be an invertible central element. Then,

C = (z ⊗ z)�(z−1)

is a compatible twist.

Proof. Obviously, C commutes with the co-product � so it remains to prove that it satisfies
the quasi-cocycle condition. To this end note that

(C ⊗ 1)(� ⊗ 1)C = (z ⊗ z ⊗ 1)(�(z−1) ⊗ 1)(�(z) ⊗ z)(� ⊗ 1)�(z−1)

= (z ⊗ z ⊗ z)(� ⊗ 1)�(z−1) (7.5)

and similarly

(1 ⊗ C)(1 ⊗ �)C = (1 ⊗ z ⊗ z)(1 ⊗ �(z−1))(z ⊗ �(z))(1 ⊗ �)�(z−1)

= (z ⊗ z ⊗ z)(1 ⊗ �)�(z−1) (7.6)

thus

(C ⊗ 1)(� ⊗ 1)C�
(7.5)= (z ⊗ z ⊗ z)(� ⊗ 1)�(z−1)�

(2.1)= (z ⊗ z ⊗ z)�(1 ⊗ �)�(z−1)

(7.6)= (z ⊗ z ⊗ z)�(z−1 ⊗ z−1 ⊗ z−1)(1 ⊗ C)(1 ⊗ �)C

= �(1 ⊗ C)(1 ⊗ �)C. �

With C as in the lemma, we see that

(ε ⊗ 1)C = (1 ⊗ ε)C = ε(z).

Thus, strictly speaking, ε(z−1)C qualifies as a compatible twist.
Following Altschuler and Coste [1], a quasi-triangular QHA is called a ribbon QHA if

the operator A of equation (7.4) is given by

A = (v ⊗ v)�(v−1)

for a certain invertible central element v, related to the u-operator u. This is consistent with
the lemma above and the fact that A determines a compatible twist.

In the case of ribbon Hopf algebras, we have RT R = (v ⊗ v)�(v−1), so that the
compatible twist RT R is also of the form of lemma 4. This may not be the case for quasi-
triangular QHAs in general.

It is worth noting that if H is a QHA and C ∈ H ⊗ H a compatible twist then H is also
a QHA under the twisted structure induced by C with exactly the same co-product �, co-unit
ε, co-associator �, antipode S, but with canonical elements given by equation (4.2); namely,

αC = m · (S ⊗ 1)(1 ⊗ α)C−1, βC = m · (1 ⊗ S)(1 ⊗ β)C.

In view of theorem 1 and its corollary, we have immediately

Proposition 9. Suppose C ∈ H ⊗ H is a compatible twist on a QHA H. Then there exists a
unique invertible central element z ∈ H , such that

zα = αC, βCz = β.

Explicitly

z = S(Xν)αCYνβS(Zν) = X̄νβS(Ȳν)αCZ̄ν

z−1 = S(Xν)αYνβCS(Zν) = X̄νβCS(Ȳν)αZ̄ν.



Some twisted results 10141

In the case H is quasi-triangular, we have seen that C = RT R is a compatible twist. Since
the latter form a group, we have the infinite family of compatible twists C = (RT R)m,m ∈ Z,
in which case the central elements z±1 of proposition 9 give the quadratic invariants of [12].

We conclude this section by noting, in the quasi-triangular case, that twisting the Drinfeld
twist with the R-matrix R gives, from theorem 4, the twisted Drinfeld twist

FR
δ ≡ (Fδ)R = (S ⊗ S)(RT )−1 · Fδ · R−1.

On the other hand, since (RT )−1 is an R-matrix we have, from equation (6.3),

(S ⊗ S)(RT )−1 = FT
δ (RT )−1F−1

δ

which implies

FR
δ = FT

δ (RT )−1 · R−1 = FT
δ (RRT )−1

where RRT and its inverse are compatible twists under the opposite structure. This shows
that FT

δ will give rise to a Drinfeld twist under the opposite structure of proposition 7 induced
by twisting with R (which has antipode S rather than S−1). Applying T to the equation above
gives (

FR
δ

)T = Fδ(RT R)−1

which shows that, since RT R and its inverse are compatible twists,
(
FR

δ

)T
also gives rise to

a Drinfeld twist on H.

8. Quasi-dynamical QYBE

Throughout we assume H is a quasi-triangular QHA with the R-matrix R satisfying (6.1)
which we reproduce here:

(i) �T (a)R = R�(a), ∀a ∈ H,

(ii) (� ⊗ 1)R = �−1
231R13�132R23�

−1
123,

(iii) (1 ⊗ �)R = �312R13�
−1
213R12�123. (6.1′)

Applying T ⊗ 1 to (ii) and 1 ⊗ T to (iii) then gives

(ii′) (�T ⊗ 1)R = �−1
321R23�312R13�

−1
213,

(iii′) (1 ⊗ �T )R = �321R12�
−1
231R13�132.

It follows that

R12(� ⊗ 1)R = (�T ⊗ 1)R · R12

from which we deduce that R must satisfy the quasi-QYBE:

R12�
−1
231R13�132R23�

−1
123 = �−1

321R23�312R13�
−1
213R12. (8.1)

If we twist H with a twist F ∈ H ⊗ H then H is also a quasi-triangular QHA under the
twisted structure (4.1), (4.2) induced by F with the universal R-matrix

RF = FT RF−1.

Following equation (7.2), we say a twist F(λ) ∈ H ⊗H satisfies the shifted quasi-cocycle
condition if

[F(λ) ⊗ 1] · (� ⊗ 1)F (λ) · � = � · [1 ⊗ F(λ + h(1))] · (1 ⊗ �)F(λ), (8.2)

where λ ∈ H depends on one (or possibly several) parameters and h ∈ H is fixed.
Alternatively, we may write in obvious notation

F12(λ) · (� ⊗ 1)F (λ) · � = � · F23(λ + h(1)) · (1 ⊗ �)F(λ). (8.2′)
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When h = 0, this reduces to the quasi-cocycle condition (7.2) satisfied by F = F(λ). When
� = 1 ⊗ 1 ⊗ 1 (i.e., the normal Hopf-algebra case) equation (8.2) reduces to the usual shifted
cocycle condition.

Twisting H with a twist F satisfying the (unshifted) quasi-cocycle condition results in a
QHA with the same co-associator �, co-unit ε and antipode S but with the twisted co-product
�F ,R-matrix RF (and canonical elements αF , βF ). We now consider twisting H with a twist
F = F(λ) satisfying the shifted condition (8.2). Then under this twisted structure H is also
a quasi-triangular QHA with the same co-unit ε and antipode S but with the co-associator
�(λ) = �F(λ), and the co-product and the R-matrix given by

�λ(a) = F(λ)�(a)F (λ)−1, ∀a ∈ H, R(λ) = FT (λ)RF(λ)−1 (8.3)

with canonical elements αλ = αF(λ), βλ = βF(λ).
In view of equation (8.2′), we have for the co-associator

�(λ) = F12(λ) · (� ⊗ 1)F (λ) · � · (1 ⊗ �)F(λ)−1 · F23(λ)−1

= � · F23(λ + h(1)) · (1 ⊗ �)F(λ) · (1 ⊗ �)F(λ)−1 · F23(λ)−1

= � · F23(λ + h(1)) · F23(λ)−1 (8.4)

which implies

�(λ)−1 = F23(λ) · F23(λ + h(1))−1 · �−1.

In the Hopf-algebra case, equation (8.4) reduces to the expression for �(λ) obtained in [13]
(� = 1 ⊗ 1 ⊗ 1).

Under the above twisted structure equation (6.1) (ii) becomes

(�λ ⊗ 1)R(λ) = �231(λ)−1 · R13(λ) · �132(λ) · R23(λ) · �−1
123(λ).

Now

�132(λ) = (1 ⊗ T )�123(λ)

(8.4)= �132 · FT
23(λ + h(1)) · FT

23(λ)−1 (8.5)

which implies

(�λ ⊗ 1)R(λ) = �231(λ)−1 · R13(λ) · �132 · FT
23(λ + h(1)) · FT

23(λ)−1 · R23(λ) · �−1
123(λ)

(8.4)= �231(λ)−1 · R13(λ) · �132 · FT
23(λ + h(1))

· FT
23(λ)−1 · R23(λ) · F23(λ) · F23(λ + h(1))−1 · �−1

123

(8.3)= �231(λ)−1 · R13(λ) · �132 · R23(λ + h(1)) · �−1
123.

Similarly equation (6.1) (iii) becomes

(1 ⊗ �λ)R(λ) = �312(λ) · R13(λ) · �−1
213(λ) · R12(λ) · �123(λ).

Now

�312(λ) = (T ⊗ 1)(1 ⊗ T )�123(λ)

(8.4)= (T ⊗ 1)
[
�132 · FT

23(λ + h(1)) · FT
23(λ)−1

]
= �312 · FT

13(λ + h(2)) · FT
13(λ)−1

while

�−1
213(λ) = (T ⊗ 1)�(λ)−1

(8.4)= (T ⊗ 1)[F23(λ) · F23(λ + h(1))−1 · �−1]

= F13(λ) · F13(λ + h(2))−1 · �−1
213.
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Therefore,

(1 ⊗ �λ)R(λ) = �312 · FT
13(λ + h(2)) · FT

13(λ)−1 · R13(λ) · F13(λ)

· F13(λ + h(2))−1 · �−1
213 · R12(λ) · �123(λ)

(8.3)= �312 · R13(λ + h(2)) · �−1
213 · R12(λ) · �123(λ).

We thus arrive at

Lemma 5. R(λ) satisfies the co-product properties

(i) (�λ ⊗ 1)R(λ) = �−1
231(λ) · R13(λ) · �132 · R23(λ + h(1)) · �−1

123,

(ii) (1 ⊗ �λ)R(λ) = �312 · R13(λ + h(2)) · �−1
213 · R12(λ) · �123(λ),

(8.6)
(iii)

(
�T

λ ⊗ 1
)
R(λ) = �−1

321(λ) · R23(λ) · �312 · R13(λ + h(2)) · �−1
213,

(iv)
(
1 ⊗ �T

λ

)
R(λ) = �321 · R12(λ + h(3)) · �−1

231 · R13(λ) · �132(λ).

Proof. We have already proved (i) and (ii) while (iii) follows by applying (T ⊗ 1) to (i) and
(iv) by applying (1 ⊗ T ) to (ii). �

We are now in a position to determine the QQYBE (8.1) satisfied by R = R(λ) for this
twisted structure. We have

R23(λ) · �312 · R13(λ + h(2)) · �−1
213 · R12(λ)

(8.6)(ii)= R23(λ) · (1 ⊗ �λ)R(λ) · �−1
123(λ)

(6.1)(i)= (
1 ⊗ �T

λ

)
R(λ) · R23(λ) · �−1

123(λ)

(8.6)(iv)= �321 · R12(λ + h(3)) · �−1
231 · R13(λ) · �132(λ) · R23(λ) · �−1

123(λ)

where for the last three terms we have

�132(λ) · R23(λ) · �−1
123(λ)

(8.4,8.5)= �132 · FT
23(λ + h(1)) · FT

23(λ)−1

·R23(λ) · F23(λ) · F23(λ + h(1))−1 · �−1
123

(8.3)= �132 · R23(λ + h(1)) · �−1
123.

Hence,

R23(λ) · �312 · R13(λ + h(2)) · �−1
213 · R12(λ)

= �321 · R12(λ + h(3)) · �−1
231 · R13(λ) · �132 · R23(λ + h(1)) · �−1

123.

We thus arrive at

Proposition 10. R(λ) satisfies the quasi-dynamical QYBE

R12(λ + h(3)) · �−1
231 · R13(λ) · �132 · R23(λ + h(1)) · �−1

123

= �−1
321 · R23(λ) · �312 · R13(λ + h(2)) · �−1

213 · R12(λ). (8.7)

In the Hopf algebra case (� = 1 ⊗ 1 ⊗ 1), equation (8.7) reduces to the usual dynamical
QYBE. If we set h = 0, then equation (8.7) reduces to the quasi-QYBE (8.1) satisfied by
R = R(λ). Hence, the term quasi-dynamical QYBE for (8.7): we could, alternatively, refer to
(8.7) as the dynamical quasi-QYBE (dynamical QQYBE), since it is obviously the quasi-Hopf
algebra analogue of the usual dynamical QYBE.

With respect to the QHA structure of propositions 2, 2′, we have the R-matrices

R′(λ) = (S ⊗ S)R(λ), R0(λ) = (S−1 ⊗ S−1)R(λ),
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respectively. Then applying (S ⊗ S ⊗ S), (S−1 ⊗ S−1 ⊗ S−1) respectively to equation (8.7),
it follows that both of these R-matrices satisfy the opposite quasi-dynamical QYBE

R̃12(λ) · �̃−1
231 · R̃13(λ + h(2)) · �̃132 · R̃23(λ) · �̃−1

123

= �̃−1
321 · R̃23(λ + h(1)) · �̃312 · R̃13(λ) · �̃−1

213 · R̃12(λ + h(3)),

where �̃ is the co-associator of propositions 2, 2′ and R̃(λ) denotesR′(λ),R0(λ), respectively.
Moreover, applying (T ⊗ 1)((1 ⊗ T )(T ⊗ 1) to equation (8.7) it is easily seen that RT (λ)

also satisfies the above opposite quasi-dynamical QYBE but with respect to the opposite
co-associator �T of proposition 1.

We anticipate that the quasi-dynamical QYBE will play an important role in obtaining
elliptic solutions to the QQYBE from trigonometric ones via twisted QUEs. Of particular
interest is the quasi-dynamical QYBE for elliptic quantum groups.
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